| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shlesb1.1 |
|- A e. SH |
| 2 |
|
shlesb1.2 |
|- B e. SH |
| 3 |
|
ssid |
|- B C_ B |
| 4 |
3
|
biantrur |
|- ( A C_ B <-> ( B C_ B /\ A C_ B ) ) |
| 5 |
2 1 2
|
shslubi |
|- ( ( B C_ B /\ A C_ B ) <-> ( B +H A ) C_ B ) |
| 6 |
2 1
|
shsub2i |
|- B C_ ( A +H B ) |
| 7 |
|
eqss |
|- ( ( A +H B ) = B <-> ( ( A +H B ) C_ B /\ B C_ ( A +H B ) ) ) |
| 8 |
6 7
|
mpbiran2 |
|- ( ( A +H B ) = B <-> ( A +H B ) C_ B ) |
| 9 |
1 2
|
shscomi |
|- ( A +H B ) = ( B +H A ) |
| 10 |
9
|
sseq1i |
|- ( ( A +H B ) C_ B <-> ( B +H A ) C_ B ) |
| 11 |
8 10
|
bitr2i |
|- ( ( B +H A ) C_ B <-> ( A +H B ) = B ) |
| 12 |
4 5 11
|
3bitri |
|- ( A C_ B <-> ( A +H B ) = B ) |