| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shlesb1.1 |
⊢ 𝐴 ∈ Sℋ |
| 2 |
|
shlesb1.2 |
⊢ 𝐵 ∈ Sℋ |
| 3 |
|
ssid |
⊢ 𝐵 ⊆ 𝐵 |
| 4 |
3
|
biantrur |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) ) |
| 5 |
2 1 2
|
shslubi |
⊢ ( ( 𝐵 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) ↔ ( 𝐵 +ℋ 𝐴 ) ⊆ 𝐵 ) |
| 6 |
2 1
|
shsub2i |
⊢ 𝐵 ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 7 |
|
eqss |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = 𝐵 ↔ ( ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 8 |
6 7
|
mpbiran2 |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = 𝐵 ↔ ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐵 ) |
| 9 |
1 2
|
shscomi |
⊢ ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) |
| 10 |
9
|
sseq1i |
⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐵 ↔ ( 𝐵 +ℋ 𝐴 ) ⊆ 𝐵 ) |
| 11 |
8 10
|
bitr2i |
⊢ ( ( 𝐵 +ℋ 𝐴 ) ⊆ 𝐵 ↔ ( 𝐴 +ℋ 𝐵 ) = 𝐵 ) |
| 12 |
4 5 11
|
3bitri |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 +ℋ 𝐵 ) = 𝐵 ) |