Metamath Proof Explorer


Theorem shslubi

Description: The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shslub.1 𝐴S
shslub.2 𝐵S
shslub.3 𝐶S
Assertion shslubi ( ( 𝐴𝐶𝐵𝐶 ) ↔ ( 𝐴 + 𝐵 ) ⊆ 𝐶 )

Proof

Step Hyp Ref Expression
1 shslub.1 𝐴S
2 shslub.2 𝐵S
3 shslub.3 𝐶S
4 1 3 2 shlessi ( 𝐴𝐶 → ( 𝐴 + 𝐵 ) ⊆ ( 𝐶 + 𝐵 ) )
5 3 2 shscomi ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 )
6 4 5 sseqtrdi ( 𝐴𝐶 → ( 𝐴 + 𝐵 ) ⊆ ( 𝐵 + 𝐶 ) )
7 2 3 3 shlessi ( 𝐵𝐶 → ( 𝐵 + 𝐶 ) ⊆ ( 𝐶 + 𝐶 ) )
8 3 shsidmi ( 𝐶 + 𝐶 ) = 𝐶
9 7 8 sseqtrdi ( 𝐵𝐶 → ( 𝐵 + 𝐶 ) ⊆ 𝐶 )
10 6 9 sylan9ss ( ( 𝐴𝐶𝐵𝐶 ) → ( 𝐴 + 𝐵 ) ⊆ 𝐶 )
11 1 2 shsub1i 𝐴 ⊆ ( 𝐴 + 𝐵 )
12 sstr ( ( 𝐴 ⊆ ( 𝐴 + 𝐵 ) ∧ ( 𝐴 + 𝐵 ) ⊆ 𝐶 ) → 𝐴𝐶 )
13 11 12 mpan ( ( 𝐴 + 𝐵 ) ⊆ 𝐶𝐴𝐶 )
14 2 1 shsub2i 𝐵 ⊆ ( 𝐴 + 𝐵 )
15 sstr ( ( 𝐵 ⊆ ( 𝐴 + 𝐵 ) ∧ ( 𝐴 + 𝐵 ) ⊆ 𝐶 ) → 𝐵𝐶 )
16 14 15 mpan ( ( 𝐴 + 𝐵 ) ⊆ 𝐶𝐵𝐶 )
17 13 16 jca ( ( 𝐴 + 𝐵 ) ⊆ 𝐶 → ( 𝐴𝐶𝐵𝐶 ) )
18 10 17 impbii ( ( 𝐴𝐶𝐵𝐶 ) ↔ ( 𝐴 + 𝐵 ) ⊆ 𝐶 )