| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shslub.1 |
⊢ 𝐴 ∈ Sℋ |
| 2 |
|
shslub.2 |
⊢ 𝐵 ∈ Sℋ |
| 3 |
|
shslub.3 |
⊢ 𝐶 ∈ Sℋ |
| 4 |
1 3 2
|
shlessi |
⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐶 +ℋ 𝐵 ) ) |
| 5 |
3 2
|
shscomi |
⊢ ( 𝐶 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐶 ) |
| 6 |
4 5
|
sseqtrdi |
⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐵 +ℋ 𝐶 ) ) |
| 7 |
2 3 3
|
shlessi |
⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐵 +ℋ 𝐶 ) ⊆ ( 𝐶 +ℋ 𝐶 ) ) |
| 8 |
3
|
shsidmi |
⊢ ( 𝐶 +ℋ 𝐶 ) = 𝐶 |
| 9 |
7 8
|
sseqtrdi |
⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐵 +ℋ 𝐶 ) ⊆ 𝐶 ) |
| 10 |
6 9
|
sylan9ss |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 ) |
| 11 |
1 2
|
shsub1i |
⊢ 𝐴 ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 12 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ( 𝐴 +ℋ 𝐵 ) ∧ ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |
| 13 |
11 12
|
mpan |
⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 → 𝐴 ⊆ 𝐶 ) |
| 14 |
2 1
|
shsub2i |
⊢ 𝐵 ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 15 |
|
sstr |
⊢ ( ( 𝐵 ⊆ ( 𝐴 +ℋ 𝐵 ) ∧ ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 ) → 𝐵 ⊆ 𝐶 ) |
| 16 |
14 15
|
mpan |
⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 → 𝐵 ⊆ 𝐶 ) |
| 17 |
13 16
|
jca |
⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 → ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ) |
| 18 |
10 17
|
impbii |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐶 ) |