| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shsidm.1 |
⊢ 𝐴 ∈ Sℋ |
| 2 |
1 1
|
shseli |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 3 |
|
shaddcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 +ℎ 𝑧 ) ∈ 𝐴 ) |
| 4 |
1 3
|
mp3an1 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 +ℎ 𝑧 ) ∈ 𝐴 ) |
| 5 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( 𝑥 ∈ 𝐴 ↔ ( 𝑦 +ℎ 𝑧 ) ∈ 𝐴 ) ) |
| 6 |
4 5
|
syl5ibrcom |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ) |
| 7 |
6
|
rexlimivv |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) |
| 8 |
2 7
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 9 |
8
|
ssriv |
⊢ ( 𝐴 +ℋ 𝐴 ) ⊆ 𝐴 |
| 10 |
1 1
|
shsub1i |
⊢ 𝐴 ⊆ ( 𝐴 +ℋ 𝐴 ) |
| 11 |
9 10
|
eqssi |
⊢ ( 𝐴 +ℋ 𝐴 ) = 𝐴 |