Metamath Proof Explorer


Theorem shsidmi

Description: Idempotent law for Hilbert subspace sum. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis shsidm.1 AS
Assertion shsidmi A+A=A

Proof

Step Hyp Ref Expression
1 shsidm.1 AS
2 1 1 shseli xA+AyAzAx=y+z
3 shaddcl ASyAzAy+zA
4 1 3 mp3an1 yAzAy+zA
5 eleq1 x=y+zxAy+zA
6 4 5 syl5ibrcom yAzAx=y+zxA
7 6 rexlimivv yAzAx=y+zxA
8 2 7 sylbi xA+AxA
9 8 ssriv A+AA
10 1 1 shsub1i AA+A
11 9 10 eqssi A+A=A