| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 |  | signs.h |  |-  H = ( ( <" 0 "> ++ F ) oF - ( ( F ++ <" 0 "> ) oFC x. C ) ) | 
						
							| 6 | 1 2 3 4 5 | signshlen |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> ( # ` H ) = ( ( # ` F ) + 1 ) ) | 
						
							| 7 |  | lencl |  |-  ( F e. Word RR -> ( # ` F ) e. NN0 ) | 
						
							| 8 | 7 | adantr |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> ( # ` F ) e. NN0 ) | 
						
							| 9 |  | nn0p1nn |  |-  ( ( # ` F ) e. NN0 -> ( ( # ` F ) + 1 ) e. NN ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> ( ( # ` F ) + 1 ) e. NN ) | 
						
							| 11 | 6 10 | eqeltrd |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> ( # ` H ) e. NN ) | 
						
							| 12 | 11 | nnne0d |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> ( # ` H ) =/= 0 ) | 
						
							| 13 | 1 2 3 4 5 | signshwrd |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> H e. Word RR ) | 
						
							| 14 |  | hasheq0 |  |-  ( H e. Word RR -> ( ( # ` H ) = 0 <-> H = (/) ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> ( ( # ` H ) = 0 <-> H = (/) ) ) | 
						
							| 16 | 15 | necon3bid |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> ( ( # ` H ) =/= 0 <-> H =/= (/) ) ) | 
						
							| 17 | 12 16 | mpbid |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> H =/= (/) ) |