| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 |  | signs.h | ⊢ 𝐻  =  ( ( 〈“ 0 ”〉  ++  𝐹 )  ∘f   −  ( ( 𝐹  ++  〈“ 0 ”〉 )  ∘f/c   ·  𝐶 ) ) | 
						
							| 6 | 1 2 3 4 5 | signshlen | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  ( ♯ ‘ 𝐻 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) ) | 
						
							| 7 |  | lencl | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 9 |  | nn0p1nn | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝐹 )  +  1 )  ∈  ℕ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  ( ( ♯ ‘ 𝐹 )  +  1 )  ∈  ℕ ) | 
						
							| 11 | 6 10 | eqeltrd | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  ( ♯ ‘ 𝐻 )  ∈  ℕ ) | 
						
							| 12 | 11 | nnne0d | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  ( ♯ ‘ 𝐻 )  ≠  0 ) | 
						
							| 13 | 1 2 3 4 5 | signshwrd | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  𝐻  ∈  Word  ℝ ) | 
						
							| 14 |  | hasheq0 | ⊢ ( 𝐻  ∈  Word  ℝ  →  ( ( ♯ ‘ 𝐻 )  =  0  ↔  𝐻  =  ∅ ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  ( ( ♯ ‘ 𝐻 )  =  0  ↔  𝐻  =  ∅ ) ) | 
						
							| 16 | 15 | necon3bid | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  ( ( ♯ ‘ 𝐻 )  ≠  0  ↔  𝐻  ≠  ∅ ) ) | 
						
							| 17 | 12 16 | mpbid | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  𝐻  ≠  ∅ ) |