Description: H , corresponding to the word F multiplied by ( x - C ) , is a word. (Contributed by Thierry Arnoux, 29-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | signsv.p | ⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) | |
signsv.w | ⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } | ||
signsv.t | ⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | ||
signsv.v | ⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) | ||
signs.h | ⊢ 𝐻 = ( ( 〈“ 0 ”〉 ++ 𝐹 ) ∘f − ( ( 𝐹 ++ 〈“ 0 ”〉 ) ∘f/c · 𝐶 ) ) | ||
Assertion | signshwrd | ⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → 𝐻 ∈ Word ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | ⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) | |
2 | signsv.w | ⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } | |
3 | signsv.t | ⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | |
4 | signsv.v | ⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) | |
5 | signs.h | ⊢ 𝐻 = ( ( 〈“ 0 ”〉 ++ 𝐹 ) ∘f − ( ( 𝐹 ++ 〈“ 0 ”〉 ) ∘f/c · 𝐶 ) ) | |
6 | 1 2 3 4 5 | signshf | ⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → 𝐻 : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ ) |
7 | iswrdi | ⊢ ( 𝐻 : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ → 𝐻 ∈ Word ℝ ) | |
8 | 6 7 | syl | ⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → 𝐻 ∈ Word ℝ ) |