Description: H , corresponding to the word F multiplied by ( x - C ) , is a word. (Contributed by Thierry Arnoux, 29-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | signsv.p | |- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
|
signsv.w | |- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
||
signsv.t | |- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
||
signsv.v | |- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
||
signs.h | |- H = ( ( <" 0 "> ++ F ) oF - ( ( F ++ <" 0 "> ) oFC x. C ) ) |
||
Assertion | signshwrd | |- ( ( F e. Word RR /\ C e. RR+ ) -> H e. Word RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | |- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
|
2 | signsv.w | |- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
|
3 | signsv.t | |- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
|
4 | signsv.v | |- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
|
5 | signs.h | |- H = ( ( <" 0 "> ++ F ) oF - ( ( F ++ <" 0 "> ) oFC x. C ) ) |
|
6 | 1 2 3 4 5 | signshf | |- ( ( F e. Word RR /\ C e. RR+ ) -> H : ( 0 ..^ ( ( # ` F ) + 1 ) ) --> RR ) |
7 | iswrdi | |- ( H : ( 0 ..^ ( ( # ` F ) + 1 ) ) --> RR -> H e. Word RR ) |
|
8 | 6 7 | syl | |- ( ( F e. Word RR /\ C e. RR+ ) -> H e. Word RR ) |