| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 |  | signs.h |  |-  H = ( ( <" 0 "> ++ F ) oF - ( ( F ++ <" 0 "> ) oFC x. C ) ) | 
						
							| 6 |  | resubcl |  |-  ( ( x e. RR /\ y e. RR ) -> ( x - y ) e. RR ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( F e. Word RR /\ C e. RR+ ) /\ ( x e. RR /\ y e. RR ) ) -> ( x - y ) e. RR ) | 
						
							| 8 |  | 0re |  |-  0 e. RR | 
						
							| 9 |  | s1cl |  |-  ( 0 e. RR -> <" 0 "> e. Word RR ) | 
						
							| 10 | 8 9 | ax-mp |  |-  <" 0 "> e. Word RR | 
						
							| 11 |  | ccatcl |  |-  ( ( <" 0 "> e. Word RR /\ F e. Word RR ) -> ( <" 0 "> ++ F ) e. Word RR ) | 
						
							| 12 | 10 11 | mpan |  |-  ( F e. Word RR -> ( <" 0 "> ++ F ) e. Word RR ) | 
						
							| 13 |  | wrdf |  |-  ( ( <" 0 "> ++ F ) e. Word RR -> ( <" 0 "> ++ F ) : ( 0 ..^ ( # ` ( <" 0 "> ++ F ) ) ) --> RR ) | 
						
							| 14 | 12 13 | syl |  |-  ( F e. Word RR -> ( <" 0 "> ++ F ) : ( 0 ..^ ( # ` ( <" 0 "> ++ F ) ) ) --> RR ) | 
						
							| 15 |  | 1cnd |  |-  ( F e. Word RR -> 1 e. CC ) | 
						
							| 16 |  | lencl |  |-  ( F e. Word RR -> ( # ` F ) e. NN0 ) | 
						
							| 17 | 16 | nn0cnd |  |-  ( F e. Word RR -> ( # ` F ) e. CC ) | 
						
							| 18 |  | ccatlen |  |-  ( ( <" 0 "> e. Word RR /\ F e. Word RR ) -> ( # ` ( <" 0 "> ++ F ) ) = ( ( # ` <" 0 "> ) + ( # ` F ) ) ) | 
						
							| 19 | 10 18 | mpan |  |-  ( F e. Word RR -> ( # ` ( <" 0 "> ++ F ) ) = ( ( # ` <" 0 "> ) + ( # ` F ) ) ) | 
						
							| 20 |  | s1len |  |-  ( # ` <" 0 "> ) = 1 | 
						
							| 21 | 20 | oveq1i |  |-  ( ( # ` <" 0 "> ) + ( # ` F ) ) = ( 1 + ( # ` F ) ) | 
						
							| 22 | 19 21 | eqtrdi |  |-  ( F e. Word RR -> ( # ` ( <" 0 "> ++ F ) ) = ( 1 + ( # ` F ) ) ) | 
						
							| 23 | 15 17 22 | comraddd |  |-  ( F e. Word RR -> ( # ` ( <" 0 "> ++ F ) ) = ( ( # ` F ) + 1 ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( F e. Word RR -> ( 0 ..^ ( # ` ( <" 0 "> ++ F ) ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) | 
						
							| 25 | 24 | feq2d |  |-  ( F e. Word RR -> ( ( <" 0 "> ++ F ) : ( 0 ..^ ( # ` ( <" 0 "> ++ F ) ) ) --> RR <-> ( <" 0 "> ++ F ) : ( 0 ..^ ( ( # ` F ) + 1 ) ) --> RR ) ) | 
						
							| 26 | 14 25 | mpbid |  |-  ( F e. Word RR -> ( <" 0 "> ++ F ) : ( 0 ..^ ( ( # ` F ) + 1 ) ) --> RR ) | 
						
							| 27 | 26 | adantr |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> ( <" 0 "> ++ F ) : ( 0 ..^ ( ( # ` F ) + 1 ) ) --> RR ) | 
						
							| 28 |  | remulcl |  |-  ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ( F e. Word RR /\ C e. RR+ ) /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) | 
						
							| 30 |  | ccatcl |  |-  ( ( F e. Word RR /\ <" 0 "> e. Word RR ) -> ( F ++ <" 0 "> ) e. Word RR ) | 
						
							| 31 | 10 30 | mpan2 |  |-  ( F e. Word RR -> ( F ++ <" 0 "> ) e. Word RR ) | 
						
							| 32 |  | wrdf |  |-  ( ( F ++ <" 0 "> ) e. Word RR -> ( F ++ <" 0 "> ) : ( 0 ..^ ( # ` ( F ++ <" 0 "> ) ) ) --> RR ) | 
						
							| 33 | 31 32 | syl |  |-  ( F e. Word RR -> ( F ++ <" 0 "> ) : ( 0 ..^ ( # ` ( F ++ <" 0 "> ) ) ) --> RR ) | 
						
							| 34 |  | ccatws1len |  |-  ( F e. Word RR -> ( # ` ( F ++ <" 0 "> ) ) = ( ( # ` F ) + 1 ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( F e. Word RR -> ( 0 ..^ ( # ` ( F ++ <" 0 "> ) ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) | 
						
							| 36 | 35 | feq2d |  |-  ( F e. Word RR -> ( ( F ++ <" 0 "> ) : ( 0 ..^ ( # ` ( F ++ <" 0 "> ) ) ) --> RR <-> ( F ++ <" 0 "> ) : ( 0 ..^ ( ( # ` F ) + 1 ) ) --> RR ) ) | 
						
							| 37 | 33 36 | mpbid |  |-  ( F e. Word RR -> ( F ++ <" 0 "> ) : ( 0 ..^ ( ( # ` F ) + 1 ) ) --> RR ) | 
						
							| 38 | 37 | adantr |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> ( F ++ <" 0 "> ) : ( 0 ..^ ( ( # ` F ) + 1 ) ) --> RR ) | 
						
							| 39 |  | ovexd |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> ( 0 ..^ ( ( # ` F ) + 1 ) ) e. _V ) | 
						
							| 40 |  | rpre |  |-  ( C e. RR+ -> C e. RR ) | 
						
							| 41 | 40 | adantl |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> C e. RR ) | 
						
							| 42 | 29 38 39 41 | ofcf |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> ( ( F ++ <" 0 "> ) oFC x. C ) : ( 0 ..^ ( ( # ` F ) + 1 ) ) --> RR ) | 
						
							| 43 |  | inidm |  |-  ( ( 0 ..^ ( ( # ` F ) + 1 ) ) i^i ( 0 ..^ ( ( # ` F ) + 1 ) ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) | 
						
							| 44 | 7 27 42 39 39 43 | off |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> ( ( <" 0 "> ++ F ) oF - ( ( F ++ <" 0 "> ) oFC x. C ) ) : ( 0 ..^ ( ( # ` F ) + 1 ) ) --> RR ) | 
						
							| 45 | 5 | feq1i |  |-  ( H : ( 0 ..^ ( ( # ` F ) + 1 ) ) --> RR <-> ( ( <" 0 "> ++ F ) oF - ( ( F ++ <" 0 "> ) oFC x. C ) ) : ( 0 ..^ ( ( # ` F ) + 1 ) ) --> RR ) | 
						
							| 46 | 44 45 | sylibr |  |-  ( ( F e. Word RR /\ C e. RR+ ) -> H : ( 0 ..^ ( ( # ` F ) + 1 ) ) --> RR ) |