Metamath Proof Explorer


Theorem signshf

Description: H , corresponding to the word F multiplied by ( x - C ) , as a function. (Contributed by Thierry Arnoux, 29-Sep-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
signs.h H=⟨“0”⟩++FfF++⟨“0”⟩fc×C
Assertion signshf FWordC+H:0..^F+1

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 signs.h H=⟨“0”⟩++FfF++⟨“0”⟩fc×C
6 resubcl xyxy
7 6 adantl FWordC+xyxy
8 0re 0
9 s1cl 0⟨“0”⟩Word
10 8 9 ax-mp ⟨“0”⟩Word
11 ccatcl ⟨“0”⟩WordFWord⟨“0”⟩++FWord
12 10 11 mpan FWord⟨“0”⟩++FWord
13 wrdf ⟨“0”⟩++FWord⟨“0”⟩++F:0..^⟨“0”⟩++F
14 12 13 syl FWord⟨“0”⟩++F:0..^⟨“0”⟩++F
15 1cnd FWord1
16 lencl FWordF0
17 16 nn0cnd FWordF
18 ccatlen ⟨“0”⟩WordFWord⟨“0”⟩++F=⟨“0”⟩+F
19 10 18 mpan FWord⟨“0”⟩++F=⟨“0”⟩+F
20 s1len ⟨“0”⟩=1
21 20 oveq1i ⟨“0”⟩+F=1+F
22 19 21 eqtrdi FWord⟨“0”⟩++F=1+F
23 15 17 22 comraddd FWord⟨“0”⟩++F=F+1
24 23 oveq2d FWord0..^⟨“0”⟩++F=0..^F+1
25 24 feq2d FWord⟨“0”⟩++F:0..^⟨“0”⟩++F⟨“0”⟩++F:0..^F+1
26 14 25 mpbid FWord⟨“0”⟩++F:0..^F+1
27 26 adantr FWordC+⟨“0”⟩++F:0..^F+1
28 remulcl xyxy
29 28 adantl FWordC+xyxy
30 ccatcl FWord⟨“0”⟩WordF++⟨“0”⟩Word
31 10 30 mpan2 FWordF++⟨“0”⟩Word
32 wrdf F++⟨“0”⟩WordF++⟨“0”⟩:0..^F++⟨“0”⟩
33 31 32 syl FWordF++⟨“0”⟩:0..^F++⟨“0”⟩
34 ccatws1len FWordF++⟨“0”⟩=F+1
35 34 oveq2d FWord0..^F++⟨“0”⟩=0..^F+1
36 35 feq2d FWordF++⟨“0”⟩:0..^F++⟨“0”⟩F++⟨“0”⟩:0..^F+1
37 33 36 mpbid FWordF++⟨“0”⟩:0..^F+1
38 37 adantr FWordC+F++⟨“0”⟩:0..^F+1
39 ovexd FWordC+0..^F+1V
40 rpre C+C
41 40 adantl FWordC+C
42 29 38 39 41 ofcf FWordC+F++⟨“0”⟩fc×C:0..^F+1
43 inidm 0..^F+10..^F+1=0..^F+1
44 7 27 42 39 39 43 off FWordC+⟨“0”⟩++FfF++⟨“0”⟩fc×C:0..^F+1
45 5 feq1i H:0..^F+1⟨“0”⟩++FfF++⟨“0”⟩fc×C:0..^F+1
46 44 45 sylibr FWordC+H:0..^F+1