Metamath Proof Explorer


Theorem signshwrd

Description: H , corresponding to the word F multiplied by ( x - C ) , is a word. (Contributed by Thierry Arnoux, 29-Sep-2018)

Ref Expression
Hypotheses signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
signsv.w W = Base ndx 1 0 1 + ndx ˙
signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
signs.h H = ⟨“ 0 ”⟩ ++ F f F ++ ⟨“ 0 ”⟩ fc × C
Assertion signshwrd F Word C + H Word

Proof

Step Hyp Ref Expression
1 signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 signsv.w W = Base ndx 1 0 1 + ndx ˙
3 signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
4 signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
5 signs.h H = ⟨“ 0 ”⟩ ++ F f F ++ ⟨“ 0 ”⟩ fc × C
6 1 2 3 4 5 signshf F Word C + H : 0 ..^ F + 1
7 iswrdi H : 0 ..^ F + 1 H Word
8 6 7 syl F Word C + H Word