Metamath Proof Explorer


Theorem signshwrd

Description: H , corresponding to the word F multiplied by ( x - C ) , is a word. (Contributed by Thierry Arnoux, 29-Sep-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
signs.h H=⟨“0”⟩++FfF++⟨“0”⟩fc×C
Assertion signshwrd FWordC+HWord

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 signs.h H=⟨“0”⟩++FfF++⟨“0”⟩fc×C
6 1 2 3 4 5 signshf FWordC+H:0..^F+1
7 iswrdi H:0..^F+1HWord
8 6 7 syl FWordC+HWord