Metamath Proof Explorer


Theorem signshlen

Description: Length of H , corresponding to the word F multiplied by ( x - C ) . (Contributed by Thierry Arnoux, 14-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
signs.h H=⟨“0”⟩++FfF++⟨“0”⟩fc×C
Assertion signshlen FWordC+H=F+1

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 signs.h H=⟨“0”⟩++FfF++⟨“0”⟩fc×C
6 1 2 3 4 5 signshf FWordC+H:0..^F+1
7 ffn H:0..^F+1HFn0..^F+1
8 hashfn HFn0..^F+1H=0..^F+1
9 6 7 8 3syl FWordC+H=0..^F+1
10 lencl FWordF0
11 10 adantr FWordC+F0
12 1nn0 10
13 12 a1i FWordC+10
14 11 13 nn0addcld FWordC+F+10
15 hashfzo0 F+100..^F+1=F+1
16 14 15 syl FWordC+0..^F+1=F+1
17 9 16 eqtrd FWordC+H=F+1