Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsv.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
|
signsv.t |
⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) |
4 |
|
signsv.v |
⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
5 |
|
signs.h |
⊢ 𝐻 = ( ( 〈“ 0 ”〉 ++ 𝐹 ) ∘f − ( ( 𝐹 ++ 〈“ 0 ”〉 ) ∘f/c · 𝐶 ) ) |
6 |
1 2 3 4 5
|
signshf |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → 𝐻 : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ ) |
7 |
|
ffn |
⊢ ( 𝐻 : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ → 𝐻 Fn ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
8 |
|
hashfn |
⊢ ( 𝐻 Fn ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) → ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) ) |
9 |
6 7 8
|
3syl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) ) |
10 |
|
lencl |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
11 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
12 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
13 |
12
|
a1i |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → 1 ∈ ℕ0 ) |
14 |
11 13
|
nn0addcld |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( ♯ ‘ 𝐹 ) + 1 ) ∈ ℕ0 ) |
15 |
|
hashfzo0 |
⊢ ( ( ( ♯ ‘ 𝐹 ) + 1 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
17 |
9 16
|
eqtrd |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ♯ ‘ 𝐻 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |