Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsv.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
|
signsv.t |
⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) |
4 |
|
signsv.v |
⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
5 |
|
signs.h |
⊢ 𝐻 = ( ( 〈“ 0 ”〉 ++ 𝐹 ) ∘f − ( ( 𝐹 ++ 〈“ 0 ”〉 ) ∘f/c · 𝐶 ) ) |
6 |
|
resubcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 − 𝑦 ) ∈ ℝ ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 − 𝑦 ) ∈ ℝ ) |
8 |
|
0re |
⊢ 0 ∈ ℝ |
9 |
|
s1cl |
⊢ ( 0 ∈ ℝ → 〈“ 0 ”〉 ∈ Word ℝ ) |
10 |
8 9
|
ax-mp |
⊢ 〈“ 0 ”〉 ∈ Word ℝ |
11 |
|
ccatcl |
⊢ ( ( 〈“ 0 ”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ ) → ( 〈“ 0 ”〉 ++ 𝐹 ) ∈ Word ℝ ) |
12 |
10 11
|
mpan |
⊢ ( 𝐹 ∈ Word ℝ → ( 〈“ 0 ”〉 ++ 𝐹 ) ∈ Word ℝ ) |
13 |
|
wrdf |
⊢ ( ( 〈“ 0 ”〉 ++ 𝐹 ) ∈ Word ℝ → ( 〈“ 0 ”〉 ++ 𝐹 ) : ( 0 ..^ ( ♯ ‘ ( 〈“ 0 ”〉 ++ 𝐹 ) ) ) ⟶ ℝ ) |
14 |
12 13
|
syl |
⊢ ( 𝐹 ∈ Word ℝ → ( 〈“ 0 ”〉 ++ 𝐹 ) : ( 0 ..^ ( ♯ ‘ ( 〈“ 0 ”〉 ++ 𝐹 ) ) ) ⟶ ℝ ) |
15 |
|
1cnd |
⊢ ( 𝐹 ∈ Word ℝ → 1 ∈ ℂ ) |
16 |
|
lencl |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
17 |
16
|
nn0cnd |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ℂ ) |
18 |
|
ccatlen |
⊢ ( ( 〈“ 0 ”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ ) → ( ♯ ‘ ( 〈“ 0 ”〉 ++ 𝐹 ) ) = ( ( ♯ ‘ 〈“ 0 ”〉 ) + ( ♯ ‘ 𝐹 ) ) ) |
19 |
10 18
|
mpan |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ ( 〈“ 0 ”〉 ++ 𝐹 ) ) = ( ( ♯ ‘ 〈“ 0 ”〉 ) + ( ♯ ‘ 𝐹 ) ) ) |
20 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 0 ”〉 ) = 1 |
21 |
20
|
oveq1i |
⊢ ( ( ♯ ‘ 〈“ 0 ”〉 ) + ( ♯ ‘ 𝐹 ) ) = ( 1 + ( ♯ ‘ 𝐹 ) ) |
22 |
19 21
|
eqtrdi |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ ( 〈“ 0 ”〉 ++ 𝐹 ) ) = ( 1 + ( ♯ ‘ 𝐹 ) ) ) |
23 |
15 17 22
|
comraddd |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ ( 〈“ 0 ”〉 ++ 𝐹 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝐹 ∈ Word ℝ → ( 0 ..^ ( ♯ ‘ ( 〈“ 0 ”〉 ++ 𝐹 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
25 |
24
|
feq2d |
⊢ ( 𝐹 ∈ Word ℝ → ( ( 〈“ 0 ”〉 ++ 𝐹 ) : ( 0 ..^ ( ♯ ‘ ( 〈“ 0 ”〉 ++ 𝐹 ) ) ) ⟶ ℝ ↔ ( 〈“ 0 ”〉 ++ 𝐹 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ ) ) |
26 |
14 25
|
mpbid |
⊢ ( 𝐹 ∈ Word ℝ → ( 〈“ 0 ”〉 ++ 𝐹 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ ) |
27 |
26
|
adantr |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → ( 〈“ 0 ”〉 ++ 𝐹 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ ) |
28 |
|
remulcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
30 |
|
ccatcl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 〈“ 0 ”〉 ∈ Word ℝ ) → ( 𝐹 ++ 〈“ 0 ”〉 ) ∈ Word ℝ ) |
31 |
10 30
|
mpan2 |
⊢ ( 𝐹 ∈ Word ℝ → ( 𝐹 ++ 〈“ 0 ”〉 ) ∈ Word ℝ ) |
32 |
|
wrdf |
⊢ ( ( 𝐹 ++ 〈“ 0 ”〉 ) ∈ Word ℝ → ( 𝐹 ++ 〈“ 0 ”〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 0 ”〉 ) ) ) ⟶ ℝ ) |
33 |
31 32
|
syl |
⊢ ( 𝐹 ∈ Word ℝ → ( 𝐹 ++ 〈“ 0 ”〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 0 ”〉 ) ) ) ⟶ ℝ ) |
34 |
|
ccatws1len |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ ( 𝐹 ++ 〈“ 0 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝐹 ∈ Word ℝ → ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 0 ”〉 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
36 |
35
|
feq2d |
⊢ ( 𝐹 ∈ Word ℝ → ( ( 𝐹 ++ 〈“ 0 ”〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 0 ”〉 ) ) ) ⟶ ℝ ↔ ( 𝐹 ++ 〈“ 0 ”〉 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ ) ) |
37 |
33 36
|
mpbid |
⊢ ( 𝐹 ∈ Word ℝ → ( 𝐹 ++ 〈“ 0 ”〉 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ ) |
38 |
37
|
adantr |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐹 ++ 〈“ 0 ”〉 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ ) |
39 |
|
ovexd |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∈ V ) |
40 |
|
rpre |
⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ ) |
41 |
40
|
adantl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
42 |
29 38 39 41
|
ofcf |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐹 ++ 〈“ 0 ”〉 ) ∘f/c · 𝐶 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ ) |
43 |
|
inidm |
⊢ ( ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∩ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
44 |
7 27 42 39 39 43
|
off |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 〈“ 0 ”〉 ++ 𝐹 ) ∘f − ( ( 𝐹 ++ 〈“ 0 ”〉 ) ∘f/c · 𝐶 ) ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ ) |
45 |
5
|
feq1i |
⊢ ( 𝐻 : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ ↔ ( ( 〈“ 0 ”〉 ++ 𝐹 ) ∘f − ( ( 𝐹 ++ 〈“ 0 ”〉 ) ∘f/c · 𝐶 ) ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ ) |
46 |
44 45
|
sylibr |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+ ) → 𝐻 : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ⟶ ℝ ) |