| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 |  | signs.h | ⊢ 𝐻  =  ( ( 〈“ 0 ”〉  ++  𝐹 )  ∘f   −  ( ( 𝐹  ++  〈“ 0 ”〉 )  ∘f/c   ·  𝐶 ) ) | 
						
							| 6 |  | resubcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  −  𝑦 )  ∈  ℝ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ ) )  →  ( 𝑥  −  𝑦 )  ∈  ℝ ) | 
						
							| 8 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 9 |  | s1cl | ⊢ ( 0  ∈  ℝ  →  〈“ 0 ”〉  ∈  Word  ℝ ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ 〈“ 0 ”〉  ∈  Word  ℝ | 
						
							| 11 |  | ccatcl | ⊢ ( ( 〈“ 0 ”〉  ∈  Word  ℝ  ∧  𝐹  ∈  Word  ℝ )  →  ( 〈“ 0 ”〉  ++  𝐹 )  ∈  Word  ℝ ) | 
						
							| 12 | 10 11 | mpan | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 〈“ 0 ”〉  ++  𝐹 )  ∈  Word  ℝ ) | 
						
							| 13 |  | wrdf | ⊢ ( ( 〈“ 0 ”〉  ++  𝐹 )  ∈  Word  ℝ  →  ( 〈“ 0 ”〉  ++  𝐹 ) : ( 0 ..^ ( ♯ ‘ ( 〈“ 0 ”〉  ++  𝐹 ) ) ) ⟶ ℝ ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 〈“ 0 ”〉  ++  𝐹 ) : ( 0 ..^ ( ♯ ‘ ( 〈“ 0 ”〉  ++  𝐹 ) ) ) ⟶ ℝ ) | 
						
							| 15 |  | 1cnd | ⊢ ( 𝐹  ∈  Word  ℝ  →  1  ∈  ℂ ) | 
						
							| 16 |  | lencl | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 17 | 16 | nn0cnd | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 18 |  | ccatlen | ⊢ ( ( 〈“ 0 ”〉  ∈  Word  ℝ  ∧  𝐹  ∈  Word  ℝ )  →  ( ♯ ‘ ( 〈“ 0 ”〉  ++  𝐹 ) )  =  ( ( ♯ ‘ 〈“ 0 ”〉 )  +  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 19 | 10 18 | mpan | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ ( 〈“ 0 ”〉  ++  𝐹 ) )  =  ( ( ♯ ‘ 〈“ 0 ”〉 )  +  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 20 |  | s1len | ⊢ ( ♯ ‘ 〈“ 0 ”〉 )  =  1 | 
						
							| 21 | 20 | oveq1i | ⊢ ( ( ♯ ‘ 〈“ 0 ”〉 )  +  ( ♯ ‘ 𝐹 ) )  =  ( 1  +  ( ♯ ‘ 𝐹 ) ) | 
						
							| 22 | 19 21 | eqtrdi | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ ( 〈“ 0 ”〉  ++  𝐹 ) )  =  ( 1  +  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 23 | 15 17 22 | comraddd | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ ( 〈“ 0 ”〉  ++  𝐹 ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 0 ..^ ( ♯ ‘ ( 〈“ 0 ”〉  ++  𝐹 ) ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ) | 
						
							| 25 | 24 | feq2d | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ( 〈“ 0 ”〉  ++  𝐹 ) : ( 0 ..^ ( ♯ ‘ ( 〈“ 0 ”〉  ++  𝐹 ) ) ) ⟶ ℝ  ↔  ( 〈“ 0 ”〉  ++  𝐹 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ⟶ ℝ ) ) | 
						
							| 26 | 14 25 | mpbid | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 〈“ 0 ”〉  ++  𝐹 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ⟶ ℝ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  ( 〈“ 0 ”〉  ++  𝐹 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ⟶ ℝ ) | 
						
							| 28 |  | remulcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  ·  𝑦 )  ∈  ℝ ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℝ ) | 
						
							| 30 |  | ccatcl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  〈“ 0 ”〉  ∈  Word  ℝ )  →  ( 𝐹  ++  〈“ 0 ”〉 )  ∈  Word  ℝ ) | 
						
							| 31 | 10 30 | mpan2 | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 𝐹  ++  〈“ 0 ”〉 )  ∈  Word  ℝ ) | 
						
							| 32 |  | wrdf | ⊢ ( ( 𝐹  ++  〈“ 0 ”〉 )  ∈  Word  ℝ  →  ( 𝐹  ++  〈“ 0 ”〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹  ++  〈“ 0 ”〉 ) ) ) ⟶ ℝ ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 𝐹  ++  〈“ 0 ”〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹  ++  〈“ 0 ”〉 ) ) ) ⟶ ℝ ) | 
						
							| 34 |  | ccatws1len | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ ( 𝐹  ++  〈“ 0 ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 0 ..^ ( ♯ ‘ ( 𝐹  ++  〈“ 0 ”〉 ) ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ) | 
						
							| 36 | 35 | feq2d | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ( 𝐹  ++  〈“ 0 ”〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹  ++  〈“ 0 ”〉 ) ) ) ⟶ ℝ  ↔  ( 𝐹  ++  〈“ 0 ”〉 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ⟶ ℝ ) ) | 
						
							| 37 | 33 36 | mpbid | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 𝐹  ++  〈“ 0 ”〉 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ⟶ ℝ ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐹  ++  〈“ 0 ”〉 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ⟶ ℝ ) | 
						
							| 39 |  | ovexd | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∈  V ) | 
						
							| 40 |  | rpre | ⊢ ( 𝐶  ∈  ℝ+  →  𝐶  ∈  ℝ ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  𝐶  ∈  ℝ ) | 
						
							| 42 | 29 38 39 41 | ofcf | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  ( ( 𝐹  ++  〈“ 0 ”〉 )  ∘f/c   ·  𝐶 ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ⟶ ℝ ) | 
						
							| 43 |  | inidm | ⊢ ( ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∩  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) | 
						
							| 44 | 7 27 42 39 39 43 | off | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  ( ( 〈“ 0 ”〉  ++  𝐹 )  ∘f   −  ( ( 𝐹  ++  〈“ 0 ”〉 )  ∘f/c   ·  𝐶 ) ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ⟶ ℝ ) | 
						
							| 45 | 5 | feq1i | ⊢ ( 𝐻 : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ⟶ ℝ  ↔  ( ( 〈“ 0 ”〉  ++  𝐹 )  ∘f   −  ( ( 𝐹  ++  〈“ 0 ”〉 )  ∘f/c   ·  𝐶 ) ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ⟶ ℝ ) | 
						
							| 46 | 44 45 | sylibr | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐶  ∈  ℝ+ )  →  𝐻 : ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ⟶ ℝ ) |