| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re |  |-  1 e. RR | 
						
							| 2 |  | 0lt1 |  |-  0 < 1 | 
						
							| 3 |  | 1le1 |  |-  1 <_ 1 | 
						
							| 4 |  | 0xr |  |-  0 e. RR* | 
						
							| 5 |  | elioc2 |  |-  ( ( 0 e. RR* /\ 1 e. RR ) -> ( 1 e. ( 0 (,] 1 ) <-> ( 1 e. RR /\ 0 < 1 /\ 1 <_ 1 ) ) ) | 
						
							| 6 | 4 1 5 | mp2an |  |-  ( 1 e. ( 0 (,] 1 ) <-> ( 1 e. RR /\ 0 < 1 /\ 1 <_ 1 ) ) | 
						
							| 7 | 1 2 3 6 | mpbir3an |  |-  1 e. ( 0 (,] 1 ) | 
						
							| 8 |  | sin01gt0 |  |-  ( 1 e. ( 0 (,] 1 ) -> 0 < ( sin ` 1 ) ) | 
						
							| 9 |  | cos01gt0 |  |-  ( 1 e. ( 0 (,] 1 ) -> 0 < ( cos ` 1 ) ) | 
						
							| 10 | 8 9 | jca |  |-  ( 1 e. ( 0 (,] 1 ) -> ( 0 < ( sin ` 1 ) /\ 0 < ( cos ` 1 ) ) ) | 
						
							| 11 | 7 10 | ax-mp |  |-  ( 0 < ( sin ` 1 ) /\ 0 < ( cos ` 1 ) ) |