| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
|- 0 e. RR* |
| 2 |
|
1re |
|- 1 e. RR |
| 3 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) |
| 4 |
1 2 3
|
mp2an |
|- ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) |
| 5 |
4
|
simp1bi |
|- ( A e. ( 0 (,] 1 ) -> A e. RR ) |
| 6 |
5
|
resqcld |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. RR ) |
| 7 |
6
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. CC ) |
| 8 |
|
2cn |
|- 2 e. CC |
| 9 |
|
3cn |
|- 3 e. CC |
| 10 |
|
3ne0 |
|- 3 =/= 0 |
| 11 |
9 10
|
pm3.2i |
|- ( 3 e. CC /\ 3 =/= 0 ) |
| 12 |
|
div12 |
|- ( ( 2 e. CC /\ ( A ^ 2 ) e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
| 13 |
8 11 12
|
mp3an13 |
|- ( ( A ^ 2 ) e. CC -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
| 14 |
7 13
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
| 15 |
|
2z |
|- 2 e. ZZ |
| 16 |
|
expgt0 |
|- ( ( A e. RR /\ 2 e. ZZ /\ 0 < A ) -> 0 < ( A ^ 2 ) ) |
| 17 |
15 16
|
mp3an2 |
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( A ^ 2 ) ) |
| 18 |
17
|
3adant3 |
|- ( ( A e. RR /\ 0 < A /\ A <_ 1 ) -> 0 < ( A ^ 2 ) ) |
| 19 |
4 18
|
sylbi |
|- ( A e. ( 0 (,] 1 ) -> 0 < ( A ^ 2 ) ) |
| 20 |
|
2lt3 |
|- 2 < 3 |
| 21 |
|
2re |
|- 2 e. RR |
| 22 |
|
3re |
|- 3 e. RR |
| 23 |
|
3pos |
|- 0 < 3 |
| 24 |
21 22 22 23
|
ltdiv1ii |
|- ( 2 < 3 <-> ( 2 / 3 ) < ( 3 / 3 ) ) |
| 25 |
20 24
|
mpbi |
|- ( 2 / 3 ) < ( 3 / 3 ) |
| 26 |
9 10
|
dividi |
|- ( 3 / 3 ) = 1 |
| 27 |
25 26
|
breqtri |
|- ( 2 / 3 ) < 1 |
| 28 |
21 22 10
|
redivcli |
|- ( 2 / 3 ) e. RR |
| 29 |
|
ltmul2 |
|- ( ( ( 2 / 3 ) e. RR /\ 1 e. RR /\ ( ( A ^ 2 ) e. RR /\ 0 < ( A ^ 2 ) ) ) -> ( ( 2 / 3 ) < 1 <-> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) ) |
| 30 |
28 2 29
|
mp3an12 |
|- ( ( ( A ^ 2 ) e. RR /\ 0 < ( A ^ 2 ) ) -> ( ( 2 / 3 ) < 1 <-> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) ) |
| 31 |
27 30
|
mpbii |
|- ( ( ( A ^ 2 ) e. RR /\ 0 < ( A ^ 2 ) ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) |
| 32 |
6 19 31
|
syl2anc |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) |
| 33 |
7
|
mulridd |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. 1 ) = ( A ^ 2 ) ) |
| 34 |
32 33
|
breqtrd |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( A ^ 2 ) ) |
| 35 |
14 34
|
eqbrtrd |
|- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) ) |
| 36 |
|
0re |
|- 0 e. RR |
| 37 |
|
ltle |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
| 38 |
36 37
|
mpan |
|- ( A e. RR -> ( 0 < A -> 0 <_ A ) ) |
| 39 |
38
|
imdistani |
|- ( ( A e. RR /\ 0 < A ) -> ( A e. RR /\ 0 <_ A ) ) |
| 40 |
|
le2sq2 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( 1 e. RR /\ A <_ 1 ) ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) |
| 41 |
2 40
|
mpanr1 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ A <_ 1 ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) |
| 42 |
39 41
|
stoic3 |
|- ( ( A e. RR /\ 0 < A /\ A <_ 1 ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) |
| 43 |
4 42
|
sylbi |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) |
| 44 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 45 |
43 44
|
breqtrdi |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) <_ 1 ) |
| 46 |
|
redivcl |
|- ( ( ( A ^ 2 ) e. RR /\ 3 e. RR /\ 3 =/= 0 ) -> ( ( A ^ 2 ) / 3 ) e. RR ) |
| 47 |
22 10 46
|
mp3an23 |
|- ( ( A ^ 2 ) e. RR -> ( ( A ^ 2 ) / 3 ) e. RR ) |
| 48 |
6 47
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 3 ) e. RR ) |
| 49 |
|
remulcl |
|- ( ( 2 e. RR /\ ( ( A ^ 2 ) / 3 ) e. RR ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR ) |
| 50 |
21 48 49
|
sylancr |
|- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR ) |
| 51 |
|
ltletr |
|- ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR /\ ( A ^ 2 ) e. RR /\ 1 e. RR ) -> ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) /\ ( A ^ 2 ) <_ 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) ) |
| 52 |
2 51
|
mp3an3 |
|- ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR /\ ( A ^ 2 ) e. RR ) -> ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) /\ ( A ^ 2 ) <_ 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) ) |
| 53 |
50 6 52
|
syl2anc |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) /\ ( A ^ 2 ) <_ 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) ) |
| 54 |
35 45 53
|
mp2and |
|- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) |
| 55 |
|
posdif |
|- ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR /\ 1 e. RR ) -> ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 <-> 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) ) |
| 56 |
50 2 55
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 <-> 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) ) |
| 57 |
54 56
|
mpbid |
|- ( A e. ( 0 (,] 1 ) -> 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) |
| 58 |
|
cos01bnd |
|- ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) |
| 59 |
58
|
simpld |
|- ( A e. ( 0 (,] 1 ) -> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) |
| 60 |
|
resubcl |
|- ( ( 1 e. RR /\ ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR ) -> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) e. RR ) |
| 61 |
2 50 60
|
sylancr |
|- ( A e. ( 0 (,] 1 ) -> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) e. RR ) |
| 62 |
5
|
recoscld |
|- ( A e. ( 0 (,] 1 ) -> ( cos ` A ) e. RR ) |
| 63 |
|
lttr |
|- ( ( 0 e. RR /\ ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) e. RR /\ ( cos ` A ) e. RR ) -> ( ( 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) /\ ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) -> 0 < ( cos ` A ) ) ) |
| 64 |
36 61 62 63
|
mp3an2i |
|- ( A e. ( 0 (,] 1 ) -> ( ( 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) /\ ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) -> 0 < ( cos ` A ) ) ) |
| 65 |
57 59 64
|
mp2and |
|- ( A e. ( 0 (,] 1 ) -> 0 < ( cos ` A ) ) |