| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
|- 1 e. RR |
| 2 |
|
0xr |
|- 0 e. RR* |
| 3 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) |
| 4 |
2 1 3
|
mp2an |
|- ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) |
| 5 |
4
|
simp1bi |
|- ( A e. ( 0 (,] 1 ) -> A e. RR ) |
| 6 |
5
|
resqcld |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. RR ) |
| 7 |
6
|
rehalfcld |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 2 ) e. RR ) |
| 8 |
|
resubcl |
|- ( ( 1 e. RR /\ ( ( A ^ 2 ) / 2 ) e. RR ) -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. RR ) |
| 9 |
1 7 8
|
sylancr |
|- ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. RR ) |
| 10 |
9
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. CC ) |
| 11 |
|
ax-icn |
|- _i e. CC |
| 12 |
5
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> A e. CC ) |
| 13 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 14 |
11 12 13
|
sylancr |
|- ( A e. ( 0 (,] 1 ) -> ( _i x. A ) e. CC ) |
| 15 |
|
4nn0 |
|- 4 e. NN0 |
| 16 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
| 17 |
16
|
eftlcl |
|- ( ( ( _i x. A ) e. CC /\ 4 e. NN0 ) -> sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
| 18 |
14 15 17
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
| 19 |
18
|
recld |
|- ( A e. ( 0 (,] 1 ) -> ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. RR ) |
| 20 |
19
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. CC ) |
| 21 |
16
|
recos4p |
|- ( A e. RR -> ( cos ` A ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) |
| 22 |
5 21
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( cos ` A ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) |
| 23 |
10 20 22
|
mvrladdd |
|- ( A e. ( 0 (,] 1 ) -> ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) = ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
| 24 |
23
|
fveq2d |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) ) = ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) |
| 25 |
20
|
abscld |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) e. RR ) |
| 26 |
18
|
abscld |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. RR ) |
| 27 |
|
6nn |
|- 6 e. NN |
| 28 |
|
nndivre |
|- ( ( ( A ^ 2 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 2 ) / 6 ) e. RR ) |
| 29 |
6 27 28
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 6 ) e. RR ) |
| 30 |
|
absrele |
|- ( sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC -> ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) <_ ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
| 31 |
18 30
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) <_ ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
| 32 |
|
reexpcl |
|- ( ( A e. RR /\ 4 e. NN0 ) -> ( A ^ 4 ) e. RR ) |
| 33 |
5 15 32
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. RR ) |
| 34 |
|
nndivre |
|- ( ( ( A ^ 4 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 4 ) / 6 ) e. RR ) |
| 35 |
33 27 34
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) e. RR ) |
| 36 |
16
|
ef01bndlem |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) < ( ( A ^ 4 ) / 6 ) ) |
| 37 |
|
2nn0 |
|- 2 e. NN0 |
| 38 |
37
|
a1i |
|- ( A e. ( 0 (,] 1 ) -> 2 e. NN0 ) |
| 39 |
|
4z |
|- 4 e. ZZ |
| 40 |
|
2re |
|- 2 e. RR |
| 41 |
|
4re |
|- 4 e. RR |
| 42 |
|
2lt4 |
|- 2 < 4 |
| 43 |
40 41 42
|
ltleii |
|- 2 <_ 4 |
| 44 |
|
2z |
|- 2 e. ZZ |
| 45 |
44
|
eluz1i |
|- ( 4 e. ( ZZ>= ` 2 ) <-> ( 4 e. ZZ /\ 2 <_ 4 ) ) |
| 46 |
39 43 45
|
mpbir2an |
|- 4 e. ( ZZ>= ` 2 ) |
| 47 |
46
|
a1i |
|- ( A e. ( 0 (,] 1 ) -> 4 e. ( ZZ>= ` 2 ) ) |
| 48 |
4
|
simp2bi |
|- ( A e. ( 0 (,] 1 ) -> 0 < A ) |
| 49 |
|
0re |
|- 0 e. RR |
| 50 |
|
ltle |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
| 51 |
49 5 50
|
sylancr |
|- ( A e. ( 0 (,] 1 ) -> ( 0 < A -> 0 <_ A ) ) |
| 52 |
48 51
|
mpd |
|- ( A e. ( 0 (,] 1 ) -> 0 <_ A ) |
| 53 |
4
|
simp3bi |
|- ( A e. ( 0 (,] 1 ) -> A <_ 1 ) |
| 54 |
5 38 47 52 53
|
leexp2rd |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) <_ ( A ^ 2 ) ) |
| 55 |
|
6re |
|- 6 e. RR |
| 56 |
55
|
a1i |
|- ( A e. ( 0 (,] 1 ) -> 6 e. RR ) |
| 57 |
|
6pos |
|- 0 < 6 |
| 58 |
57
|
a1i |
|- ( A e. ( 0 (,] 1 ) -> 0 < 6 ) |
| 59 |
|
lediv1 |
|- ( ( ( A ^ 4 ) e. RR /\ ( A ^ 2 ) e. RR /\ ( 6 e. RR /\ 0 < 6 ) ) -> ( ( A ^ 4 ) <_ ( A ^ 2 ) <-> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 2 ) / 6 ) ) ) |
| 60 |
33 6 56 58 59
|
syl112anc |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) <_ ( A ^ 2 ) <-> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 2 ) / 6 ) ) ) |
| 61 |
54 60
|
mpbid |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 2 ) / 6 ) ) |
| 62 |
26 35 29 36 61
|
ltletrd |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) < ( ( A ^ 2 ) / 6 ) ) |
| 63 |
25 26 29 31 62
|
lelttrd |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) < ( ( A ^ 2 ) / 6 ) ) |
| 64 |
24 63
|
eqbrtrd |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) ) < ( ( A ^ 2 ) / 6 ) ) |
| 65 |
5
|
recoscld |
|- ( A e. ( 0 (,] 1 ) -> ( cos ` A ) e. RR ) |
| 66 |
65 9 29
|
absdifltd |
|- ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) ) < ( ( A ^ 2 ) / 6 ) <-> ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) < ( cos ` A ) /\ ( cos ` A ) < ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) ) ) ) |
| 67 |
|
1cnd |
|- ( A e. ( 0 (,] 1 ) -> 1 e. CC ) |
| 68 |
7
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 2 ) e. CC ) |
| 69 |
29
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 6 ) e. CC ) |
| 70 |
67 68 69
|
subsub4d |
|- ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) = ( 1 - ( ( ( A ^ 2 ) / 2 ) + ( ( A ^ 2 ) / 6 ) ) ) ) |
| 71 |
|
halfpm6th |
|- ( ( ( 1 / 2 ) - ( 1 / 6 ) ) = ( 1 / 3 ) /\ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) ) |
| 72 |
71
|
simpri |
|- ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) |
| 73 |
72
|
oveq2i |
|- ( ( A ^ 2 ) x. ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) |
| 74 |
6
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. CC ) |
| 75 |
|
2cn |
|- 2 e. CC |
| 76 |
|
2ne0 |
|- 2 =/= 0 |
| 77 |
75 76
|
reccli |
|- ( 1 / 2 ) e. CC |
| 78 |
|
6cn |
|- 6 e. CC |
| 79 |
27
|
nnne0i |
|- 6 =/= 0 |
| 80 |
78 79
|
reccli |
|- ( 1 / 6 ) e. CC |
| 81 |
|
adddi |
|- ( ( ( A ^ 2 ) e. CC /\ ( 1 / 2 ) e. CC /\ ( 1 / 6 ) e. CC ) -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 82 |
77 80 81
|
mp3an23 |
|- ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 83 |
74 82
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 84 |
73 83
|
eqtr3id |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 85 |
|
3cn |
|- 3 e. CC |
| 86 |
|
3ne0 |
|- 3 =/= 0 |
| 87 |
85 86
|
pm3.2i |
|- ( 3 e. CC /\ 3 =/= 0 ) |
| 88 |
|
div12 |
|- ( ( 2 e. CC /\ ( A ^ 2 ) e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
| 89 |
75 87 88
|
mp3an13 |
|- ( ( A ^ 2 ) e. CC -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
| 90 |
74 89
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
| 91 |
|
divrec |
|- ( ( ( A ^ 2 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( A ^ 2 ) / 2 ) = ( ( A ^ 2 ) x. ( 1 / 2 ) ) ) |
| 92 |
75 76 91
|
mp3an23 |
|- ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) / 2 ) = ( ( A ^ 2 ) x. ( 1 / 2 ) ) ) |
| 93 |
74 92
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 2 ) = ( ( A ^ 2 ) x. ( 1 / 2 ) ) ) |
| 94 |
|
divrec |
|- ( ( ( A ^ 2 ) e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> ( ( A ^ 2 ) / 6 ) = ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) |
| 95 |
78 79 94
|
mp3an23 |
|- ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) / 6 ) = ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) |
| 96 |
74 95
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 6 ) = ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) |
| 97 |
93 96
|
oveq12d |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 2 ) / 2 ) + ( ( A ^ 2 ) / 6 ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 98 |
84 90 97
|
3eqtr4rd |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 2 ) / 2 ) + ( ( A ^ 2 ) / 6 ) ) = ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) |
| 99 |
98
|
oveq2d |
|- ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( ( A ^ 2 ) / 2 ) + ( ( A ^ 2 ) / 6 ) ) ) = ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) |
| 100 |
70 99
|
eqtrd |
|- ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) = ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) |
| 101 |
100
|
breq1d |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) < ( cos ` A ) <-> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) ) |
| 102 |
67 68 69
|
subsubd |
|- ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( ( A ^ 2 ) / 2 ) - ( ( A ^ 2 ) / 6 ) ) ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) ) |
| 103 |
71
|
simpli |
|- ( ( 1 / 2 ) - ( 1 / 6 ) ) = ( 1 / 3 ) |
| 104 |
103
|
oveq2i |
|- ( ( A ^ 2 ) x. ( ( 1 / 2 ) - ( 1 / 6 ) ) ) = ( ( A ^ 2 ) x. ( 1 / 3 ) ) |
| 105 |
|
subdi |
|- ( ( ( A ^ 2 ) e. CC /\ ( 1 / 2 ) e. CC /\ ( 1 / 6 ) e. CC ) -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) - ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 106 |
77 80 105
|
mp3an23 |
|- ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) - ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 107 |
74 106
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) - ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 108 |
104 107
|
eqtr3id |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 1 / 3 ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 109 |
|
divrec |
|- ( ( ( A ^ 2 ) e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> ( ( A ^ 2 ) / 3 ) = ( ( A ^ 2 ) x. ( 1 / 3 ) ) ) |
| 110 |
85 86 109
|
mp3an23 |
|- ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) / 3 ) = ( ( A ^ 2 ) x. ( 1 / 3 ) ) ) |
| 111 |
74 110
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 3 ) = ( ( A ^ 2 ) x. ( 1 / 3 ) ) ) |
| 112 |
93 96
|
oveq12d |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 2 ) / 2 ) - ( ( A ^ 2 ) / 6 ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 113 |
108 111 112
|
3eqtr4rd |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 2 ) / 2 ) - ( ( A ^ 2 ) / 6 ) ) = ( ( A ^ 2 ) / 3 ) ) |
| 114 |
113
|
oveq2d |
|- ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( ( A ^ 2 ) / 2 ) - ( ( A ^ 2 ) / 6 ) ) ) = ( 1 - ( ( A ^ 2 ) / 3 ) ) ) |
| 115 |
102 114
|
eqtr3d |
|- ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) = ( 1 - ( ( A ^ 2 ) / 3 ) ) ) |
| 116 |
115
|
breq2d |
|- ( A e. ( 0 (,] 1 ) -> ( ( cos ` A ) < ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) <-> ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) |
| 117 |
101 116
|
anbi12d |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) < ( cos ` A ) /\ ( cos ` A ) < ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) ) <-> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) ) |
| 118 |
66 117
|
bitrd |
|- ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) ) < ( ( A ^ 2 ) / 6 ) <-> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) ) |
| 119 |
64 118
|
mpbid |
|- ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) |