| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 2 |
1
|
oveq1i |
|- ( ( 1 ^ 2 ) / 3 ) = ( 1 / 3 ) |
| 3 |
2
|
oveq2i |
|- ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) = ( 2 x. ( 1 / 3 ) ) |
| 4 |
|
2cn |
|- 2 e. CC |
| 5 |
|
3cn |
|- 3 e. CC |
| 6 |
|
3ne0 |
|- 3 =/= 0 |
| 7 |
4 5 6
|
divreci |
|- ( 2 / 3 ) = ( 2 x. ( 1 / 3 ) ) |
| 8 |
3 7
|
eqtr4i |
|- ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) = ( 2 / 3 ) |
| 9 |
8
|
oveq2i |
|- ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) = ( 1 - ( 2 / 3 ) ) |
| 10 |
|
ax-1cn |
|- 1 e. CC |
| 11 |
4 5 6
|
divcli |
|- ( 2 / 3 ) e. CC |
| 12 |
5 6
|
reccli |
|- ( 1 / 3 ) e. CC |
| 13 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 14 |
13
|
oveq1i |
|- ( 3 / 3 ) = ( ( 2 + 1 ) / 3 ) |
| 15 |
5 6
|
dividi |
|- ( 3 / 3 ) = 1 |
| 16 |
4 10 5 6
|
divdiri |
|- ( ( 2 + 1 ) / 3 ) = ( ( 2 / 3 ) + ( 1 / 3 ) ) |
| 17 |
14 15 16
|
3eqtr3ri |
|- ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 |
| 18 |
10 11 12 17
|
subaddrii |
|- ( 1 - ( 2 / 3 ) ) = ( 1 / 3 ) |
| 19 |
9 18
|
eqtri |
|- ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) = ( 1 / 3 ) |
| 20 |
|
1re |
|- 1 e. RR |
| 21 |
|
0lt1 |
|- 0 < 1 |
| 22 |
|
1le1 |
|- 1 <_ 1 |
| 23 |
|
0xr |
|- 0 e. RR* |
| 24 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( 1 e. ( 0 (,] 1 ) <-> ( 1 e. RR /\ 0 < 1 /\ 1 <_ 1 ) ) ) |
| 25 |
23 20 24
|
mp2an |
|- ( 1 e. ( 0 (,] 1 ) <-> ( 1 e. RR /\ 0 < 1 /\ 1 <_ 1 ) ) |
| 26 |
|
cos01bnd |
|- ( 1 e. ( 0 (,] 1 ) -> ( ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 1 - ( ( 1 ^ 2 ) / 3 ) ) ) ) |
| 27 |
25 26
|
sylbir |
|- ( ( 1 e. RR /\ 0 < 1 /\ 1 <_ 1 ) -> ( ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 1 - ( ( 1 ^ 2 ) / 3 ) ) ) ) |
| 28 |
20 21 22 27
|
mp3an |
|- ( ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 1 - ( ( 1 ^ 2 ) / 3 ) ) ) |
| 29 |
28
|
simpli |
|- ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) < ( cos ` 1 ) |
| 30 |
19 29
|
eqbrtrri |
|- ( 1 / 3 ) < ( cos ` 1 ) |
| 31 |
28
|
simpri |
|- ( cos ` 1 ) < ( 1 - ( ( 1 ^ 2 ) / 3 ) ) |
| 32 |
2
|
oveq2i |
|- ( 1 - ( ( 1 ^ 2 ) / 3 ) ) = ( 1 - ( 1 / 3 ) ) |
| 33 |
10 12 11
|
subadd2i |
|- ( ( 1 - ( 1 / 3 ) ) = ( 2 / 3 ) <-> ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 ) |
| 34 |
17 33
|
mpbir |
|- ( 1 - ( 1 / 3 ) ) = ( 2 / 3 ) |
| 35 |
32 34
|
eqtri |
|- ( 1 - ( ( 1 ^ 2 ) / 3 ) ) = ( 2 / 3 ) |
| 36 |
31 35
|
breqtri |
|- ( cos ` 1 ) < ( 2 / 3 ) |
| 37 |
30 36
|
pm3.2i |
|- ( ( 1 / 3 ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 2 / 3 ) ) |