| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sq1 |
|
| 2 |
1
|
oveq1i |
|
| 3 |
2
|
oveq2i |
|
| 4 |
|
2cn |
|
| 5 |
|
3cn |
|
| 6 |
|
3ne0 |
|
| 7 |
4 5 6
|
divreci |
|
| 8 |
3 7
|
eqtr4i |
|
| 9 |
8
|
oveq2i |
|
| 10 |
|
ax-1cn |
|
| 11 |
4 5 6
|
divcli |
|
| 12 |
5 6
|
reccli |
|
| 13 |
|
df-3 |
|
| 14 |
13
|
oveq1i |
|
| 15 |
5 6
|
dividi |
|
| 16 |
4 10 5 6
|
divdiri |
|
| 17 |
14 15 16
|
3eqtr3ri |
|
| 18 |
10 11 12 17
|
subaddrii |
|
| 19 |
9 18
|
eqtri |
|
| 20 |
|
1re |
|
| 21 |
|
0lt1 |
|
| 22 |
|
1le1 |
|
| 23 |
|
0xr |
|
| 24 |
|
elioc2 |
|
| 25 |
23 20 24
|
mp2an |
|
| 26 |
|
cos01bnd |
|
| 27 |
25 26
|
sylbir |
|
| 28 |
20 21 22 27
|
mp3an |
|
| 29 |
28
|
simpli |
|
| 30 |
19 29
|
eqbrtrri |
|
| 31 |
28
|
simpri |
|
| 32 |
2
|
oveq2i |
|
| 33 |
10 12 11
|
subadd2i |
|
| 34 |
17 33
|
mpbir |
|
| 35 |
32 34
|
eqtri |
|
| 36 |
31 35
|
breqtri |
|
| 37 |
30 36
|
pm3.2i |
|