Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of Conway p. 19. (Contributed by Scott Fenton, 6-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sltmuld.1 | |- ( ph -> A e. No ) |
|
| sltmuld.2 | |- ( ph -> B e. No ) |
||
| sltmuld.3 | |- ( ph -> C e. No ) |
||
| sltmuld.4 | |- ( ph -> D e. No ) |
||
| sltmuld.5 | |- ( ph -> A |
||
| sltmuld.6 | |- ( ph -> C |
||
| Assertion | sltmuld | |- ( ph -> ( ( A x.s D ) -s ( A x.s C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltmuld.1 | |- ( ph -> A e. No ) |
|
| 2 | sltmuld.2 | |- ( ph -> B e. No ) |
|
| 3 | sltmuld.3 | |- ( ph -> C e. No ) |
|
| 4 | sltmuld.4 | |- ( ph -> D e. No ) |
|
| 5 | sltmuld.5 | |- ( ph -> A |
|
| 6 | sltmuld.6 | |- ( ph -> C |
|
| 7 | sltmul | |- ( ( ( A e. No /\ B e. No ) /\ ( C e. No /\ D e. No ) ) -> ( ( A |
|
| 8 | 1 2 3 4 7 | syl22anc | |- ( ph -> ( ( A |
| 9 | 5 6 8 | mp2and | |- ( ph -> ( ( A x.s D ) -s ( A x.s C ) ) |