| Step |
Hyp |
Ref |
Expression |
| 1 |
|
slemuld.1 |
|- ( ph -> A e. No ) |
| 2 |
|
slemuld.2 |
|- ( ph -> B e. No ) |
| 3 |
|
slemuld.3 |
|- ( ph -> C e. No ) |
| 4 |
|
slemuld.4 |
|- ( ph -> D e. No ) |
| 5 |
|
slemuld.5 |
|- ( ph -> A <_s B ) |
| 6 |
|
slemuld.6 |
|- ( ph -> C <_s D ) |
| 7 |
1 4
|
mulscld |
|- ( ph -> ( A x.s D ) e. No ) |
| 8 |
1 3
|
mulscld |
|- ( ph -> ( A x.s C ) e. No ) |
| 9 |
7 8
|
subscld |
|- ( ph -> ( ( A x.s D ) -s ( A x.s C ) ) e. No ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ ( A ( ( A x.s D ) -s ( A x.s C ) ) e. No ) |
| 11 |
2 4
|
mulscld |
|- ( ph -> ( B x.s D ) e. No ) |
| 12 |
2 3
|
mulscld |
|- ( ph -> ( B x.s C ) e. No ) |
| 13 |
11 12
|
subscld |
|- ( ph -> ( ( B x.s D ) -s ( B x.s C ) ) e. No ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ ( A ( ( B x.s D ) -s ( B x.s C ) ) e. No ) |
| 15 |
1
|
adantr |
|- ( ( ph /\ ( A A e. No ) |
| 16 |
2
|
adantr |
|- ( ( ph /\ ( A B e. No ) |
| 17 |
3
|
adantr |
|- ( ( ph /\ ( A C e. No ) |
| 18 |
4
|
adantr |
|- ( ( ph /\ ( A D e. No ) |
| 19 |
|
simprl |
|- ( ( ph /\ ( A A |
| 20 |
|
simprr |
|- ( ( ph /\ ( A C |
| 21 |
15 16 17 18 19 20
|
sltmuld |
|- ( ( ph /\ ( A ( ( A x.s D ) -s ( A x.s C ) ) |
| 22 |
10 14 21
|
sltled |
|- ( ( ph /\ ( A ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
| 23 |
22
|
anassrs |
|- ( ( ( ph /\ A ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
| 24 |
|
0sno |
|- 0s e. No |
| 25 |
|
slerflex |
|- ( 0s e. No -> 0s <_s 0s ) |
| 26 |
24 25
|
mp1i |
|- ( ph -> 0s <_s 0s ) |
| 27 |
|
subsid |
|- ( ( A x.s D ) e. No -> ( ( A x.s D ) -s ( A x.s D ) ) = 0s ) |
| 28 |
7 27
|
syl |
|- ( ph -> ( ( A x.s D ) -s ( A x.s D ) ) = 0s ) |
| 29 |
|
subsid |
|- ( ( B x.s D ) e. No -> ( ( B x.s D ) -s ( B x.s D ) ) = 0s ) |
| 30 |
11 29
|
syl |
|- ( ph -> ( ( B x.s D ) -s ( B x.s D ) ) = 0s ) |
| 31 |
26 28 30
|
3brtr4d |
|- ( ph -> ( ( A x.s D ) -s ( A x.s D ) ) <_s ( ( B x.s D ) -s ( B x.s D ) ) ) |
| 32 |
|
oveq2 |
|- ( C = D -> ( A x.s C ) = ( A x.s D ) ) |
| 33 |
32
|
oveq2d |
|- ( C = D -> ( ( A x.s D ) -s ( A x.s C ) ) = ( ( A x.s D ) -s ( A x.s D ) ) ) |
| 34 |
|
oveq2 |
|- ( C = D -> ( B x.s C ) = ( B x.s D ) ) |
| 35 |
34
|
oveq2d |
|- ( C = D -> ( ( B x.s D ) -s ( B x.s C ) ) = ( ( B x.s D ) -s ( B x.s D ) ) ) |
| 36 |
33 35
|
breq12d |
|- ( C = D -> ( ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) <-> ( ( A x.s D ) -s ( A x.s D ) ) <_s ( ( B x.s D ) -s ( B x.s D ) ) ) ) |
| 37 |
31 36
|
syl5ibrcom |
|- ( ph -> ( C = D -> ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) ) |
| 38 |
37
|
imp |
|- ( ( ph /\ C = D ) -> ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
| 39 |
38
|
adantlr |
|- ( ( ( ph /\ A ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
| 40 |
|
sleloe |
|- ( ( C e. No /\ D e. No ) -> ( C <_s D <-> ( C |
| 41 |
3 4 40
|
syl2anc |
|- ( ph -> ( C <_s D <-> ( C |
| 42 |
6 41
|
mpbid |
|- ( ph -> ( C |
| 43 |
42
|
adantr |
|- ( ( ph /\ A ( C |
| 44 |
23 39 43
|
mpjaodan |
|- ( ( ph /\ A ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
| 45 |
|
slerflex |
|- ( ( ( B x.s D ) -s ( B x.s C ) ) e. No -> ( ( B x.s D ) -s ( B x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
| 46 |
13 45
|
syl |
|- ( ph -> ( ( B x.s D ) -s ( B x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
| 47 |
|
oveq1 |
|- ( A = B -> ( A x.s D ) = ( B x.s D ) ) |
| 48 |
|
oveq1 |
|- ( A = B -> ( A x.s C ) = ( B x.s C ) ) |
| 49 |
47 48
|
oveq12d |
|- ( A = B -> ( ( A x.s D ) -s ( A x.s C ) ) = ( ( B x.s D ) -s ( B x.s C ) ) ) |
| 50 |
49
|
breq1d |
|- ( A = B -> ( ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) <-> ( ( B x.s D ) -s ( B x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) ) |
| 51 |
46 50
|
syl5ibrcom |
|- ( ph -> ( A = B -> ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) ) |
| 52 |
51
|
imp |
|- ( ( ph /\ A = B ) -> ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
| 53 |
|
sleloe |
|- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( A |
| 54 |
1 2 53
|
syl2anc |
|- ( ph -> ( A <_s B <-> ( A |
| 55 |
5 54
|
mpbid |
|- ( ph -> ( A |
| 56 |
44 52 55
|
mpjaodan |
|- ( ph -> ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |