Description: The sum of positive numbers is positive. Proof of addgt0d without ax-mulcom . (Contributed by SN, 25-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sn-addgt0d.a | |- ( ph -> A e. RR ) |
|
| sn-addgt0d.b | |- ( ph -> B e. RR ) |
||
| sn-addgt0d.1 | |- ( ph -> 0 < A ) |
||
| sn-addgt0d.2 | |- ( ph -> 0 < B ) |
||
| Assertion | sn-addgt0d | |- ( ph -> 0 < ( A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-addgt0d.a | |- ( ph -> A e. RR ) |
|
| 2 | sn-addgt0d.b | |- ( ph -> B e. RR ) |
|
| 3 | sn-addgt0d.1 | |- ( ph -> 0 < A ) |
|
| 4 | sn-addgt0d.2 | |- ( ph -> 0 < B ) |
|
| 5 | 0red | |- ( ph -> 0 e. RR ) |
|
| 6 | 1 2 | readdcld | |- ( ph -> ( A + B ) e. RR ) |
| 7 | sn-ltaddpos | |- ( ( B e. RR /\ A e. RR ) -> ( 0 < B <-> A < ( A + B ) ) ) |
|
| 8 | 2 1 7 | syl2anc | |- ( ph -> ( 0 < B <-> A < ( A + B ) ) ) |
| 9 | 4 8 | mpbid | |- ( ph -> A < ( A + B ) ) |
| 10 | 5 1 6 3 9 | lttrd | |- ( ph -> 0 < ( A + B ) ) |