| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 2 |  | 0re |  |-  0 e. RR | 
						
							| 3 |  | 1re |  |-  1 e. RR | 
						
							| 4 | 2 3 | lttri2i |  |-  ( 0 =/= 1 <-> ( 0 < 1 \/ 1 < 0 ) ) | 
						
							| 5 | 1 4 | mpbi |  |-  ( 0 < 1 \/ 1 < 0 ) | 
						
							| 6 |  | breq2 |  |-  ( x = 1 -> ( 0 < x <-> 0 < 1 ) ) | 
						
							| 7 |  | breq2 |  |-  ( x = y -> ( 0 < x <-> 0 < y ) ) | 
						
							| 8 |  | breq2 |  |-  ( x = ( y + 1 ) -> ( 0 < x <-> 0 < ( y + 1 ) ) ) | 
						
							| 9 |  | breq2 |  |-  ( x = A -> ( 0 < x <-> 0 < A ) ) | 
						
							| 10 |  | id |  |-  ( 0 < 1 -> 0 < 1 ) | 
						
							| 11 |  | nnre |  |-  ( y e. NN -> y e. RR ) | 
						
							| 12 | 11 | ad2antlr |  |-  ( ( ( 0 < 1 /\ y e. NN ) /\ 0 < y ) -> y e. RR ) | 
						
							| 13 |  | 1red |  |-  ( ( ( 0 < 1 /\ y e. NN ) /\ 0 < y ) -> 1 e. RR ) | 
						
							| 14 |  | simpr |  |-  ( ( ( 0 < 1 /\ y e. NN ) /\ 0 < y ) -> 0 < y ) | 
						
							| 15 |  | simpll |  |-  ( ( ( 0 < 1 /\ y e. NN ) /\ 0 < y ) -> 0 < 1 ) | 
						
							| 16 | 12 13 14 15 | sn-addgt0d |  |-  ( ( ( 0 < 1 /\ y e. NN ) /\ 0 < y ) -> 0 < ( y + 1 ) ) | 
						
							| 17 | 6 7 8 9 10 16 | nnindd |  |-  ( ( 0 < 1 /\ A e. NN ) -> 0 < A ) | 
						
							| 18 | 17 | gt0ne0d |  |-  ( ( 0 < 1 /\ A e. NN ) -> A =/= 0 ) | 
						
							| 19 | 18 | ancoms |  |-  ( ( A e. NN /\ 0 < 1 ) -> A =/= 0 ) | 
						
							| 20 |  | breq1 |  |-  ( x = 1 -> ( x < 0 <-> 1 < 0 ) ) | 
						
							| 21 |  | breq1 |  |-  ( x = y -> ( x < 0 <-> y < 0 ) ) | 
						
							| 22 |  | breq1 |  |-  ( x = ( y + 1 ) -> ( x < 0 <-> ( y + 1 ) < 0 ) ) | 
						
							| 23 |  | breq1 |  |-  ( x = A -> ( x < 0 <-> A < 0 ) ) | 
						
							| 24 |  | id |  |-  ( 1 < 0 -> 1 < 0 ) | 
						
							| 25 | 11 | ad2antlr |  |-  ( ( ( 1 < 0 /\ y e. NN ) /\ y < 0 ) -> y e. RR ) | 
						
							| 26 |  | 1red |  |-  ( ( ( 1 < 0 /\ y e. NN ) /\ y < 0 ) -> 1 e. RR ) | 
						
							| 27 |  | simpr |  |-  ( ( ( 1 < 0 /\ y e. NN ) /\ y < 0 ) -> y < 0 ) | 
						
							| 28 |  | simpll |  |-  ( ( ( 1 < 0 /\ y e. NN ) /\ y < 0 ) -> 1 < 0 ) | 
						
							| 29 | 25 26 27 28 | sn-addlt0d |  |-  ( ( ( 1 < 0 /\ y e. NN ) /\ y < 0 ) -> ( y + 1 ) < 0 ) | 
						
							| 30 | 20 21 22 23 24 29 | nnindd |  |-  ( ( 1 < 0 /\ A e. NN ) -> A < 0 ) | 
						
							| 31 | 30 | lt0ne0d |  |-  ( ( 1 < 0 /\ A e. NN ) -> A =/= 0 ) | 
						
							| 32 | 31 | ancoms |  |-  ( ( A e. NN /\ 1 < 0 ) -> A =/= 0 ) | 
						
							| 33 | 19 32 | jaodan |  |-  ( ( A e. NN /\ ( 0 < 1 \/ 1 < 0 ) ) -> A =/= 0 ) | 
						
							| 34 | 5 33 | mpan2 |  |-  ( A e. NN -> A =/= 0 ) |