Description: mul01 without ax-mulcom . (Contributed by SN, 5-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | sn-mul01 | |- ( A e. CC -> ( A x. 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( A e. CC -> A e. CC ) |
|
2 | 0cnd | |- ( A e. CC -> 0 e. CC ) |
|
3 | 1 2 | mulcld | |- ( A e. CC -> ( A x. 0 ) e. CC ) |
4 | 1 2 2 | adddid | |- ( A e. CC -> ( A x. ( 0 + 0 ) ) = ( ( A x. 0 ) + ( A x. 0 ) ) ) |
5 | sn-00id | |- ( 0 + 0 ) = 0 |
|
6 | 5 | oveq2i | |- ( A x. ( 0 + 0 ) ) = ( A x. 0 ) |
7 | 4 6 | eqtr3di | |- ( A e. CC -> ( ( A x. 0 ) + ( A x. 0 ) ) = ( A x. 0 ) ) |
8 | 3 7 | sn-addid0 | |- ( A e. CC -> ( A x. 0 ) = 0 ) |