Metamath Proof Explorer


Theorem sn-mul01

Description: mul01 without ax-mulcom . (Contributed by SN, 5-May-2024)

Ref Expression
Assertion sn-mul01
|- ( A e. CC -> ( A x. 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 id
 |-  ( A e. CC -> A e. CC )
2 0cnd
 |-  ( A e. CC -> 0 e. CC )
3 1 2 mulcld
 |-  ( A e. CC -> ( A x. 0 ) e. CC )
4 1 2 2 adddid
 |-  ( A e. CC -> ( A x. ( 0 + 0 ) ) = ( ( A x. 0 ) + ( A x. 0 ) ) )
5 sn-00id
 |-  ( 0 + 0 ) = 0
6 5 oveq2i
 |-  ( A x. ( 0 + 0 ) ) = ( A x. 0 )
7 4 6 eqtr3di
 |-  ( A e. CC -> ( ( A x. 0 ) + ( A x. 0 ) ) = ( A x. 0 ) )
8 3 7 sn-addid0
 |-  ( A e. CC -> ( A x. 0 ) = 0 )