Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
resubadd |
|- ( ( 0 e. RR /\ 0 e. RR /\ 0 e. RR ) -> ( ( 0 -R 0 ) = 0 <-> ( 0 + 0 ) = 0 ) ) |
3 |
1 1 1 2
|
mp3an |
|- ( ( 0 -R 0 ) = 0 <-> ( 0 + 0 ) = 0 ) |
4 |
|
df-ne |
|- ( ( 0 -R 0 ) =/= 0 <-> -. ( 0 -R 0 ) = 0 ) |
5 |
|
sn-00idlem2 |
|- ( ( 0 -R 0 ) =/= 0 -> ( 0 -R 0 ) = 1 ) |
6 |
|
sn-00idlem3 |
|- ( ( 0 -R 0 ) = 1 -> ( 0 + 0 ) = 0 ) |
7 |
5 6
|
syl |
|- ( ( 0 -R 0 ) =/= 0 -> ( 0 + 0 ) = 0 ) |
8 |
4 7
|
sylbir |
|- ( -. ( 0 -R 0 ) = 0 -> ( 0 + 0 ) = 0 ) |
9 |
3 8
|
sylnbir |
|- ( -. ( 0 + 0 ) = 0 -> ( 0 + 0 ) = 0 ) |
10 |
9
|
pm2.18i |
|- ( 0 + 0 ) = 0 |