Metamath Proof Explorer


Theorem sn-00id

Description: 00id proven without ax-mulcom but using ax-1ne0 . (Though note that the current version of 00id can be changed to avoid ax-icn , ax-addcl , ax-mulcl , ax-i2m1 , ax-cnre . Most of this is by using 0cnALT3 instead of 0cn ). (Contributed by SN, 25-Dec-2023) (Proof modification is discouraged.)

Ref Expression
Assertion sn-00id
|- ( 0 + 0 ) = 0

Proof

Step Hyp Ref Expression
1 0re
 |-  0 e. RR
2 resubadd
 |-  ( ( 0 e. RR /\ 0 e. RR /\ 0 e. RR ) -> ( ( 0 -R 0 ) = 0 <-> ( 0 + 0 ) = 0 ) )
3 1 1 1 2 mp3an
 |-  ( ( 0 -R 0 ) = 0 <-> ( 0 + 0 ) = 0 )
4 df-ne
 |-  ( ( 0 -R 0 ) =/= 0 <-> -. ( 0 -R 0 ) = 0 )
5 sn-00idlem2
 |-  ( ( 0 -R 0 ) =/= 0 -> ( 0 -R 0 ) = 1 )
6 sn-00idlem3
 |-  ( ( 0 -R 0 ) = 1 -> ( 0 + 0 ) = 0 )
7 5 6 syl
 |-  ( ( 0 -R 0 ) =/= 0 -> ( 0 + 0 ) = 0 )
8 4 7 sylbir
 |-  ( -. ( 0 -R 0 ) = 0 -> ( 0 + 0 ) = 0 )
9 3 8 sylnbir
 |-  ( -. ( 0 + 0 ) = 0 -> ( 0 + 0 ) = 0 )
10 9 pm2.18i
 |-  ( 0 + 0 ) = 0