Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
resubadd |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 0 −ℝ 0 ) = 0 ↔ ( 0 + 0 ) = 0 ) ) |
3 |
1 1 1 2
|
mp3an |
⊢ ( ( 0 −ℝ 0 ) = 0 ↔ ( 0 + 0 ) = 0 ) |
4 |
|
df-ne |
⊢ ( ( 0 −ℝ 0 ) ≠ 0 ↔ ¬ ( 0 −ℝ 0 ) = 0 ) |
5 |
|
sn-00idlem2 |
⊢ ( ( 0 −ℝ 0 ) ≠ 0 → ( 0 −ℝ 0 ) = 1 ) |
6 |
|
sn-00idlem3 |
⊢ ( ( 0 −ℝ 0 ) = 1 → ( 0 + 0 ) = 0 ) |
7 |
5 6
|
syl |
⊢ ( ( 0 −ℝ 0 ) ≠ 0 → ( 0 + 0 ) = 0 ) |
8 |
4 7
|
sylbir |
⊢ ( ¬ ( 0 −ℝ 0 ) = 0 → ( 0 + 0 ) = 0 ) |
9 |
3 8
|
sylnbir |
⊢ ( ¬ ( 0 + 0 ) = 0 → ( 0 + 0 ) = 0 ) |
10 |
9
|
pm2.18i |
⊢ ( 0 + 0 ) = 0 |