Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
rennncan2 |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 0 −ℝ 0 ) −ℝ ( 0 −ℝ 0 ) ) = ( 0 −ℝ 0 ) ) |
3 |
1 1 1 2
|
mp3an |
⊢ ( ( 0 −ℝ 0 ) −ℝ ( 0 −ℝ 0 ) ) = ( 0 −ℝ 0 ) |
4 |
|
re1m1e0m0 |
⊢ ( 1 −ℝ 1 ) = ( 0 −ℝ 0 ) |
5 |
3 4
|
eqtr4i |
⊢ ( ( 0 −ℝ 0 ) −ℝ ( 0 −ℝ 0 ) ) = ( 1 −ℝ 1 ) |
6 |
|
rernegcl |
⊢ ( 0 ∈ ℝ → ( 0 −ℝ 0 ) ∈ ℝ ) |
7 |
1 6
|
ax-mp |
⊢ ( 0 −ℝ 0 ) ∈ ℝ |
8 |
|
sn-00idlem1 |
⊢ ( ( 0 −ℝ 0 ) ∈ ℝ → ( ( 0 −ℝ 0 ) · ( 0 −ℝ 0 ) ) = ( ( 0 −ℝ 0 ) −ℝ ( 0 −ℝ 0 ) ) ) |
9 |
7 8
|
ax-mp |
⊢ ( ( 0 −ℝ 0 ) · ( 0 −ℝ 0 ) ) = ( ( 0 −ℝ 0 ) −ℝ ( 0 −ℝ 0 ) ) |
10 |
|
1re |
⊢ 1 ∈ ℝ |
11 |
|
sn-00idlem1 |
⊢ ( 1 ∈ ℝ → ( 1 · ( 0 −ℝ 0 ) ) = ( 1 −ℝ 1 ) ) |
12 |
10 11
|
ax-mp |
⊢ ( 1 · ( 0 −ℝ 0 ) ) = ( 1 −ℝ 1 ) |
13 |
5 9 12
|
3eqtr4i |
⊢ ( ( 0 −ℝ 0 ) · ( 0 −ℝ 0 ) ) = ( 1 · ( 0 −ℝ 0 ) ) |
14 |
7
|
a1i |
⊢ ( ( 0 −ℝ 0 ) ≠ 0 → ( 0 −ℝ 0 ) ∈ ℝ ) |
15 |
|
1red |
⊢ ( ( 0 −ℝ 0 ) ≠ 0 → 1 ∈ ℝ ) |
16 |
|
id |
⊢ ( ( 0 −ℝ 0 ) ≠ 0 → ( 0 −ℝ 0 ) ≠ 0 ) |
17 |
14 15 14 16
|
remulcan2d |
⊢ ( ( 0 −ℝ 0 ) ≠ 0 → ( ( ( 0 −ℝ 0 ) · ( 0 −ℝ 0 ) ) = ( 1 · ( 0 −ℝ 0 ) ) ↔ ( 0 −ℝ 0 ) = 1 ) ) |
18 |
13 17
|
mpbii |
⊢ ( ( 0 −ℝ 0 ) ≠ 0 → ( 0 −ℝ 0 ) = 1 ) |