Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
⊢ 1 ∈ ℝ |
2 |
|
resubdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐴 · ( 1 −ℝ 1 ) ) = ( ( 𝐴 · 1 ) −ℝ ( 𝐴 · 1 ) ) ) |
3 |
1 1 2
|
mp3an23 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · ( 1 −ℝ 1 ) ) = ( ( 𝐴 · 1 ) −ℝ ( 𝐴 · 1 ) ) ) |
4 |
|
re1m1e0m0 |
⊢ ( 1 −ℝ 1 ) = ( 0 −ℝ 0 ) |
5 |
4
|
oveq2i |
⊢ ( 𝐴 · ( 1 −ℝ 1 ) ) = ( 𝐴 · ( 0 −ℝ 0 ) ) |
6 |
5
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · ( 1 −ℝ 1 ) ) = ( 𝐴 · ( 0 −ℝ 0 ) ) ) |
7 |
|
ax-1rid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) |
8 |
7 7
|
oveq12d |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 · 1 ) −ℝ ( 𝐴 · 1 ) ) = ( 𝐴 −ℝ 𝐴 ) ) |
9 |
3 6 8
|
3eqtr3d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · ( 0 −ℝ 0 ) ) = ( 𝐴 −ℝ 𝐴 ) ) |