Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
|- 1 e. RR |
2 |
|
resubdi |
|- ( ( A e. RR /\ 1 e. RR /\ 1 e. RR ) -> ( A x. ( 1 -R 1 ) ) = ( ( A x. 1 ) -R ( A x. 1 ) ) ) |
3 |
1 1 2
|
mp3an23 |
|- ( A e. RR -> ( A x. ( 1 -R 1 ) ) = ( ( A x. 1 ) -R ( A x. 1 ) ) ) |
4 |
|
re1m1e0m0 |
|- ( 1 -R 1 ) = ( 0 -R 0 ) |
5 |
4
|
oveq2i |
|- ( A x. ( 1 -R 1 ) ) = ( A x. ( 0 -R 0 ) ) |
6 |
5
|
a1i |
|- ( A e. RR -> ( A x. ( 1 -R 1 ) ) = ( A x. ( 0 -R 0 ) ) ) |
7 |
|
ax-1rid |
|- ( A e. RR -> ( A x. 1 ) = A ) |
8 |
7 7
|
oveq12d |
|- ( A e. RR -> ( ( A x. 1 ) -R ( A x. 1 ) ) = ( A -R A ) ) |
9 |
3 6 8
|
3eqtr3d |
|- ( A e. RR -> ( A x. ( 0 -R 0 ) ) = ( A -R A ) ) |