Metamath Proof Explorer


Theorem resubdi

Description: Distribution of multiplication over real subtraction. (Contributed by Steven Nguyen, 3-Jun-2023)

Ref Expression
Assertion resubdi
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( B -R C ) ) = ( ( A x. B ) -R ( A x. C ) ) )

Proof

Step Hyp Ref Expression
1 remulcl
 |-  ( ( A e. RR /\ C e. RR ) -> ( A x. C ) e. RR )
2 1 3adant2
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. C ) e. RR )
3 simp1
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR )
4 rersubcl
 |-  ( ( B e. RR /\ C e. RR ) -> ( B -R C ) e. RR )
5 4 3adant1
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B -R C ) e. RR )
6 3 5 remulcld
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( B -R C ) ) e. RR )
7 3 recnd
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC )
8 simp3
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR )
9 8 recnd
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC )
10 5 recnd
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B -R C ) e. CC )
11 7 9 10 adddid
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( C + ( B -R C ) ) ) = ( ( A x. C ) + ( A x. ( B -R C ) ) ) )
12 repncan3
 |-  ( ( C e. RR /\ B e. RR ) -> ( C + ( B -R C ) ) = B )
13 12 ancoms
 |-  ( ( B e. RR /\ C e. RR ) -> ( C + ( B -R C ) ) = B )
14 13 3adant1
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + ( B -R C ) ) = B )
15 14 oveq2d
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( C + ( B -R C ) ) ) = ( A x. B ) )
16 11 15 eqtr3d
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. C ) + ( A x. ( B -R C ) ) ) = ( A x. B ) )
17 2 6 16 reladdrsub
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( B -R C ) ) = ( ( A x. B ) -R ( A x. C ) ) )