Step |
Hyp |
Ref |
Expression |
1 |
|
remulcl |
|- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
2 |
1
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
3 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
4 |
|
rersubcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B -R C ) e. RR ) |
5 |
4
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B -R C ) e. RR ) |
6 |
3 5
|
remulcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( B -R C ) ) e. RR ) |
7 |
3
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
8 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
9 |
8
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
10 |
5
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B -R C ) e. CC ) |
11 |
7 9 10
|
adddid |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( C + ( B -R C ) ) ) = ( ( A x. C ) + ( A x. ( B -R C ) ) ) ) |
12 |
|
repncan3 |
|- ( ( C e. RR /\ B e. RR ) -> ( C + ( B -R C ) ) = B ) |
13 |
12
|
ancoms |
|- ( ( B e. RR /\ C e. RR ) -> ( C + ( B -R C ) ) = B ) |
14 |
13
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + ( B -R C ) ) = B ) |
15 |
14
|
oveq2d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( C + ( B -R C ) ) ) = ( A x. B ) ) |
16 |
11 15
|
eqtr3d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. C ) + ( A x. ( B -R C ) ) ) = ( A x. B ) ) |
17 |
2 6 16
|
reladdrsub |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( B -R C ) ) = ( ( A x. B ) -R ( A x. C ) ) ) |