Metamath Proof Explorer


Theorem resubdi

Description: Distribution of multiplication over real subtraction. (Contributed by Steven Nguyen, 3-Jun-2023)

Ref Expression
Assertion resubdi ABCAB-C=AB-AC

Proof

Step Hyp Ref Expression
1 remulcl ACAC
2 1 3adant2 ABCAC
3 simp1 ABCA
4 rersubcl BCB-C
5 4 3adant1 ABCB-C
6 3 5 remulcld ABCAB-C
7 3 recnd ABCA
8 simp3 ABCC
9 8 recnd ABCC
10 5 recnd ABCB-C
11 7 9 10 adddid ABCAC+B-C=AC+AB-C
12 repncan3 CBC+B-C=B
13 12 ancoms BCC+B-C=B
14 13 3adant1 ABCC+B-C=B
15 14 oveq2d ABCAC+B-C=AB
16 11 15 eqtr3d ABCAC+AB-C=AB
17 2 6 16 reladdrsub ABCAB-C=AB-AC