| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( ( 0 −ℝ 0 ) = 1 → ( 0 · ( 0 −ℝ 0 ) ) = ( 0 · 1 ) ) |
| 2 |
1
|
oveq1d |
⊢ ( ( 0 −ℝ 0 ) = 1 → ( ( 0 · ( 0 −ℝ 0 ) ) + 0 ) = ( ( 0 · 1 ) + 0 ) ) |
| 3 |
|
0re |
⊢ 0 ∈ ℝ |
| 4 |
|
sn-00idlem1 |
⊢ ( 0 ∈ ℝ → ( 0 · ( 0 −ℝ 0 ) ) = ( 0 −ℝ 0 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 0 · ( 0 −ℝ 0 ) ) = ( 0 −ℝ 0 ) ) |
| 6 |
5
|
oveq1d |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 0 · ( 0 −ℝ 0 ) ) + 0 ) = ( ( 0 −ℝ 0 ) + 0 ) ) |
| 7 |
|
resubidaddlid |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 0 −ℝ 0 ) + 0 ) = 0 ) |
| 8 |
6 7
|
eqtrd |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 0 · ( 0 −ℝ 0 ) ) + 0 ) = 0 ) |
| 9 |
3 3 8
|
mp2an |
⊢ ( ( 0 · ( 0 −ℝ 0 ) ) + 0 ) = 0 |
| 10 |
9
|
a1i |
⊢ ( ( 0 −ℝ 0 ) = 1 → ( ( 0 · ( 0 −ℝ 0 ) ) + 0 ) = 0 ) |
| 11 |
|
ax-1rid |
⊢ ( 0 ∈ ℝ → ( 0 · 1 ) = 0 ) |
| 12 |
3 11
|
mp1i |
⊢ ( ( 0 −ℝ 0 ) = 1 → ( 0 · 1 ) = 0 ) |
| 13 |
12
|
oveq1d |
⊢ ( ( 0 −ℝ 0 ) = 1 → ( ( 0 · 1 ) + 0 ) = ( 0 + 0 ) ) |
| 14 |
2 10 13
|
3eqtr3rd |
⊢ ( ( 0 −ℝ 0 ) = 1 → ( 0 + 0 ) = 0 ) |