Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( ( 0 -R 0 ) = 1 -> ( 0 x. ( 0 -R 0 ) ) = ( 0 x. 1 ) ) |
2 |
1
|
oveq1d |
|- ( ( 0 -R 0 ) = 1 -> ( ( 0 x. ( 0 -R 0 ) ) + 0 ) = ( ( 0 x. 1 ) + 0 ) ) |
3 |
|
0re |
|- 0 e. RR |
4 |
|
sn-00idlem1 |
|- ( 0 e. RR -> ( 0 x. ( 0 -R 0 ) ) = ( 0 -R 0 ) ) |
5 |
4
|
adantr |
|- ( ( 0 e. RR /\ 0 e. RR ) -> ( 0 x. ( 0 -R 0 ) ) = ( 0 -R 0 ) ) |
6 |
5
|
oveq1d |
|- ( ( 0 e. RR /\ 0 e. RR ) -> ( ( 0 x. ( 0 -R 0 ) ) + 0 ) = ( ( 0 -R 0 ) + 0 ) ) |
7 |
|
resubidaddid1 |
|- ( ( 0 e. RR /\ 0 e. RR ) -> ( ( 0 -R 0 ) + 0 ) = 0 ) |
8 |
6 7
|
eqtrd |
|- ( ( 0 e. RR /\ 0 e. RR ) -> ( ( 0 x. ( 0 -R 0 ) ) + 0 ) = 0 ) |
9 |
3 3 8
|
mp2an |
|- ( ( 0 x. ( 0 -R 0 ) ) + 0 ) = 0 |
10 |
9
|
a1i |
|- ( ( 0 -R 0 ) = 1 -> ( ( 0 x. ( 0 -R 0 ) ) + 0 ) = 0 ) |
11 |
|
ax-1rid |
|- ( 0 e. RR -> ( 0 x. 1 ) = 0 ) |
12 |
3 11
|
mp1i |
|- ( ( 0 -R 0 ) = 1 -> ( 0 x. 1 ) = 0 ) |
13 |
12
|
oveq1d |
|- ( ( 0 -R 0 ) = 1 -> ( ( 0 x. 1 ) + 0 ) = ( 0 + 0 ) ) |
14 |
2 10 13
|
3eqtr3rd |
|- ( ( 0 -R 0 ) = 1 -> ( 0 + 0 ) = 0 ) |