Metamath Proof Explorer


Theorem sn-00idlem3

Description: Lemma for sn-00id . (Contributed by SN, 25-Dec-2023)

Ref Expression
Assertion sn-00idlem3 0 - 0 = 1 0 + 0 = 0

Proof

Step Hyp Ref Expression
1 oveq2 0 - 0 = 1 0 0 - 0 = 0 1
2 0re 0
3 sn-00idlem1 0 0 0 - 0 = 0 - 0
4 2 3 ax-mp 0 0 - 0 = 0 - 0
5 ax-1rid 0 0 1 = 0
6 2 5 ax-mp 0 1 = 0
7 1 4 6 3eqtr3g 0 - 0 = 1 0 - 0 = 0
8 7 oveq1d 0 - 0 = 1 0 - 0 + 0 = 0 + 0
9 resubidaddlid 0 0 0 - 0 + 0 = 0
10 2 2 9 mp2an 0 - 0 + 0 = 0
11 8 10 eqtr3di 0 - 0 = 1 0 + 0 = 0