Metamath Proof Explorer


Theorem sn-00id

Description: 00id proven without ax-mulcom but using ax-1ne0 . (Though note that the current version of 00id can be changed to avoid ax-icn , ax-addcl , ax-mulcl , ax-i2m1 , ax-cnre . Most of this is by using 0cnALT3 instead of 0cn ). (Contributed by SN, 25-Dec-2023) (Proof modification is discouraged.)

Ref Expression
Assertion sn-00id 0+0=0

Proof

Step Hyp Ref Expression
1 0re 0
2 resubadd 0000-0=00+0=0
3 1 1 1 2 mp3an 0-0=00+0=0
4 3 necon3abii 0-00¬0+0=0
5 sn-00idlem2 0-000-0=1
6 sn-00idlem3 0-0=10+0=0
7 5 6 syl 0-000+0=0
8 4 7 sylbir ¬0+0=00+0=0
9 8 pm2.18i 0+0=0