Description: mul01 without ax-mulcom . (Contributed by SN, 5-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | sn-mul01 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
2 | 0cnd | ⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℂ ) | |
3 | 1 2 | mulcld | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) ∈ ℂ ) |
4 | 1 2 2 | adddid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( 0 + 0 ) ) = ( ( 𝐴 · 0 ) + ( 𝐴 · 0 ) ) ) |
5 | sn-00id | ⊢ ( 0 + 0 ) = 0 | |
6 | 5 | oveq2i | ⊢ ( 𝐴 · ( 0 + 0 ) ) = ( 𝐴 · 0 ) |
7 | 4 6 | eqtr3di | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) + ( 𝐴 · 0 ) ) = ( 𝐴 · 0 ) ) |
8 | 3 7 | sn-addid0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) |