Description: mul01 without ax-mulcom . (Contributed by SN, 5-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sn-mul01 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 2 | 0cnd | ⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℂ ) | |
| 3 | 1 2 | mulcld | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) ∈ ℂ ) |
| 4 | 1 2 2 | adddid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( 0 + 0 ) ) = ( ( 𝐴 · 0 ) + ( 𝐴 · 0 ) ) ) |
| 5 | sn-00id | ⊢ ( 0 + 0 ) = 0 | |
| 6 | 5 | oveq2i | ⊢ ( 𝐴 · ( 0 + 0 ) ) = ( 𝐴 · 0 ) |
| 7 | 4 6 | eqtr3di | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) + ( 𝐴 · 0 ) ) = ( 𝐴 · 0 ) ) |
| 8 | 3 7 | sn-addid0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) |