Metamath Proof Explorer


Theorem sn-mul01

Description: mul01 without ax-mulcom . (Contributed by SN, 5-May-2024)

Ref Expression
Assertion sn-mul01 ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ )
2 0cnd ( 𝐴 ∈ ℂ → 0 ∈ ℂ )
3 1 2 mulcld ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) ∈ ℂ )
4 1 2 2 adddid ( 𝐴 ∈ ℂ → ( 𝐴 · ( 0 + 0 ) ) = ( ( 𝐴 · 0 ) + ( 𝐴 · 0 ) ) )
5 sn-00id ( 0 + 0 ) = 0
6 5 oveq2i ( 𝐴 · ( 0 + 0 ) ) = ( 𝐴 · 0 )
7 4 6 eqtr3di ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) + ( 𝐴 · 0 ) ) = ( 𝐴 · 0 ) )
8 3 7 sn-addid0 ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 )