Metamath Proof Explorer


Theorem sn-addid0

Description: A number that sums to itself is zero. Compare addid0 , readdid1addid2d . (Contributed by SN, 5-May-2024)

Ref Expression
Hypotheses sn-addid0.a ( 𝜑𝐴 ∈ ℂ )
sn-addid0.1 ( 𝜑 → ( 𝐴 + 𝐴 ) = 𝐴 )
Assertion sn-addid0 ( 𝜑𝐴 = 0 )

Proof

Step Hyp Ref Expression
1 sn-addid0.a ( 𝜑𝐴 ∈ ℂ )
2 sn-addid0.1 ( 𝜑 → ( 𝐴 + 𝐴 ) = 𝐴 )
3 sn-addid1 ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 )
4 1 3 syl ( 𝜑 → ( 𝐴 + 0 ) = 𝐴 )
5 2 4 eqtr4d ( 𝜑 → ( 𝐴 + 𝐴 ) = ( 𝐴 + 0 ) )
6 0cnd ( 𝜑 → 0 ∈ ℂ )
7 1 1 6 sn-addcand ( 𝜑 → ( ( 𝐴 + 𝐴 ) = ( 𝐴 + 0 ) ↔ 𝐴 = 0 ) )
8 5 7 mpbid ( 𝜑𝐴 = 0 )