| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sn-addcand.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
sn-addcand.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
sn-addcand.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 4 |
|
sn-negex2 |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝑥 + 𝐴 ) = 0 ) |
| 5 |
1 4
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℂ ( 𝑥 + 𝐴 ) = 0 ) |
| 6 |
|
oveq2 |
⊢ ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) → ( 𝑥 + ( 𝐴 + 𝐵 ) ) = ( 𝑥 + ( 𝐴 + 𝐶 ) ) ) |
| 7 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 𝑥 + 𝐴 ) = 0 ) |
| 8 |
7
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + 𝐴 ) + 𝐵 ) = ( 0 + 𝐵 ) ) |
| 9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → 𝑥 ∈ ℂ ) |
| 10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → 𝐴 ∈ ℂ ) |
| 11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → 𝐵 ∈ ℂ ) |
| 12 |
9 10 11
|
addassd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + 𝐴 ) + 𝐵 ) = ( 𝑥 + ( 𝐴 + 𝐵 ) ) ) |
| 13 |
|
sn-addlid |
⊢ ( 𝐵 ∈ ℂ → ( 0 + 𝐵 ) = 𝐵 ) |
| 14 |
11 13
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 0 + 𝐵 ) = 𝐵 ) |
| 15 |
8 12 14
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 𝑥 + ( 𝐴 + 𝐵 ) ) = 𝐵 ) |
| 16 |
7
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + 𝐴 ) + 𝐶 ) = ( 0 + 𝐶 ) ) |
| 17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → 𝐶 ∈ ℂ ) |
| 18 |
9 10 17
|
addassd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + 𝐴 ) + 𝐶 ) = ( 𝑥 + ( 𝐴 + 𝐶 ) ) ) |
| 19 |
|
sn-addlid |
⊢ ( 𝐶 ∈ ℂ → ( 0 + 𝐶 ) = 𝐶 ) |
| 20 |
17 19
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 0 + 𝐶 ) = 𝐶 ) |
| 21 |
16 18 20
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 𝑥 + ( 𝐴 + 𝐶 ) ) = 𝐶 ) |
| 22 |
15 21
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + ( 𝐴 + 𝐵 ) ) = ( 𝑥 + ( 𝐴 + 𝐶 ) ) ↔ 𝐵 = 𝐶 ) ) |
| 23 |
6 22
|
imbitrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) → 𝐵 = 𝐶 ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ) |
| 25 |
23 24
|
impbid1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| 26 |
5 25
|
rexlimddv |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |