| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sn-addcand.a |
|- ( ph -> A e. CC ) |
| 2 |
|
sn-addcand.b |
|- ( ph -> B e. CC ) |
| 3 |
|
sn-addcand.c |
|- ( ph -> C e. CC ) |
| 4 |
|
sn-negex2 |
|- ( A e. CC -> E. x e. CC ( x + A ) = 0 ) |
| 5 |
1 4
|
syl |
|- ( ph -> E. x e. CC ( x + A ) = 0 ) |
| 6 |
|
oveq2 |
|- ( ( A + B ) = ( A + C ) -> ( x + ( A + B ) ) = ( x + ( A + C ) ) ) |
| 7 |
|
simprr |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + A ) = 0 ) |
| 8 |
7
|
oveq1d |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + B ) = ( 0 + B ) ) |
| 9 |
|
simprl |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> x e. CC ) |
| 10 |
1
|
adantr |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> A e. CC ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> B e. CC ) |
| 12 |
9 10 11
|
addassd |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + B ) = ( x + ( A + B ) ) ) |
| 13 |
|
sn-addlid |
|- ( B e. CC -> ( 0 + B ) = B ) |
| 14 |
11 13
|
syl |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( 0 + B ) = B ) |
| 15 |
8 12 14
|
3eqtr3d |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + ( A + B ) ) = B ) |
| 16 |
7
|
oveq1d |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + C ) = ( 0 + C ) ) |
| 17 |
3
|
adantr |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> C e. CC ) |
| 18 |
9 10 17
|
addassd |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + C ) = ( x + ( A + C ) ) ) |
| 19 |
|
sn-addlid |
|- ( C e. CC -> ( 0 + C ) = C ) |
| 20 |
17 19
|
syl |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( 0 + C ) = C ) |
| 21 |
16 18 20
|
3eqtr3d |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + ( A + C ) ) = C ) |
| 22 |
15 21
|
eqeq12d |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + ( A + B ) ) = ( x + ( A + C ) ) <-> B = C ) ) |
| 23 |
6 22
|
imbitrid |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( A + B ) = ( A + C ) -> B = C ) ) |
| 24 |
|
oveq2 |
|- ( B = C -> ( A + B ) = ( A + C ) ) |
| 25 |
23 24
|
impbid1 |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( A + B ) = ( A + C ) <-> B = C ) ) |
| 26 |
5 25
|
rexlimddv |
|- ( ph -> ( ( A + B ) = ( A + C ) <-> B = C ) ) |