Step |
Hyp |
Ref |
Expression |
1 |
|
sn-addcand.a |
|- ( ph -> A e. CC ) |
2 |
|
sn-addcand.b |
|- ( ph -> B e. CC ) |
3 |
|
sn-addcand.c |
|- ( ph -> C e. CC ) |
4 |
|
sn-negex2 |
|- ( A e. CC -> E. x e. CC ( x + A ) = 0 ) |
5 |
1 4
|
syl |
|- ( ph -> E. x e. CC ( x + A ) = 0 ) |
6 |
|
oveq2 |
|- ( ( A + B ) = ( A + C ) -> ( x + ( A + B ) ) = ( x + ( A + C ) ) ) |
7 |
|
simprr |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + A ) = 0 ) |
8 |
7
|
oveq1d |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + B ) = ( 0 + B ) ) |
9 |
|
simprl |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> x e. CC ) |
10 |
1
|
adantr |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> A e. CC ) |
11 |
2
|
adantr |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> B e. CC ) |
12 |
9 10 11
|
addassd |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + B ) = ( x + ( A + B ) ) ) |
13 |
|
sn-addid2 |
|- ( B e. CC -> ( 0 + B ) = B ) |
14 |
11 13
|
syl |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( 0 + B ) = B ) |
15 |
8 12 14
|
3eqtr3d |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + ( A + B ) ) = B ) |
16 |
7
|
oveq1d |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + C ) = ( 0 + C ) ) |
17 |
3
|
adantr |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> C e. CC ) |
18 |
9 10 17
|
addassd |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + C ) = ( x + ( A + C ) ) ) |
19 |
|
sn-addid2 |
|- ( C e. CC -> ( 0 + C ) = C ) |
20 |
17 19
|
syl |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( 0 + C ) = C ) |
21 |
16 18 20
|
3eqtr3d |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + ( A + C ) ) = C ) |
22 |
15 21
|
eqeq12d |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + ( A + B ) ) = ( x + ( A + C ) ) <-> B = C ) ) |
23 |
6 22
|
syl5ib |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( A + B ) = ( A + C ) -> B = C ) ) |
24 |
|
oveq2 |
|- ( B = C -> ( A + B ) = ( A + C ) ) |
25 |
23 24
|
impbid1 |
|- ( ( ph /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( A + B ) = ( A + C ) <-> B = C ) ) |
26 |
5 25
|
rexlimddv |
|- ( ph -> ( ( A + B ) = ( A + C ) <-> B = C ) ) |