Step |
Hyp |
Ref |
Expression |
1 |
|
cnre |
|- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |
2 |
|
0cnd |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> 0 e. CC ) |
3 |
|
simp2l |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> x e. RR ) |
4 |
3
|
recnd |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> x e. CC ) |
5 |
|
ax-icn |
|- _i e. CC |
6 |
5
|
a1i |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> _i e. CC ) |
7 |
|
simp2r |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> y e. RR ) |
8 |
7
|
recnd |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> y e. CC ) |
9 |
6 8
|
mulcld |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> ( _i x. y ) e. CC ) |
10 |
2 4 9
|
addassd |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> ( ( 0 + x ) + ( _i x. y ) ) = ( 0 + ( x + ( _i x. y ) ) ) ) |
11 |
|
readdid2 |
|- ( x e. RR -> ( 0 + x ) = x ) |
12 |
11
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 + x ) = x ) |
13 |
12
|
3ad2ant2 |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> ( 0 + x ) = x ) |
14 |
13
|
oveq1d |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> ( ( 0 + x ) + ( _i x. y ) ) = ( x + ( _i x. y ) ) ) |
15 |
10 14
|
eqtr3d |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> ( 0 + ( x + ( _i x. y ) ) ) = ( x + ( _i x. y ) ) ) |
16 |
|
simp3 |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> A = ( x + ( _i x. y ) ) ) |
17 |
16
|
oveq2d |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> ( 0 + A ) = ( 0 + ( x + ( _i x. y ) ) ) ) |
18 |
15 17 16
|
3eqtr4d |
|- ( ( A e. CC /\ ( x e. RR /\ y e. RR ) /\ A = ( x + ( _i x. y ) ) ) -> ( 0 + A ) = A ) |
19 |
18
|
3exp |
|- ( A e. CC -> ( ( x e. RR /\ y e. RR ) -> ( A = ( x + ( _i x. y ) ) -> ( 0 + A ) = A ) ) ) |
20 |
19
|
rexlimdvv |
|- ( A e. CC -> ( E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) -> ( 0 + A ) = A ) ) |
21 |
1 20
|
mpd |
|- ( A e. CC -> ( 0 + A ) = A ) |