Step |
Hyp |
Ref |
Expression |
1 |
|
cnre |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) |
2 |
|
0cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → 0 ∈ ℂ ) |
3 |
|
simp2l |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → 𝑥 ∈ ℝ ) |
4 |
3
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → 𝑥 ∈ ℂ ) |
5 |
|
ax-icn |
⊢ i ∈ ℂ |
6 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → i ∈ ℂ ) |
7 |
|
simp2r |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → 𝑦 ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → 𝑦 ∈ ℂ ) |
9 |
6 8
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → ( i · 𝑦 ) ∈ ℂ ) |
10 |
2 4 9
|
addassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → ( ( 0 + 𝑥 ) + ( i · 𝑦 ) ) = ( 0 + ( 𝑥 + ( i · 𝑦 ) ) ) ) |
11 |
|
readdid2 |
⊢ ( 𝑥 ∈ ℝ → ( 0 + 𝑥 ) = 𝑥 ) |
12 |
11
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 + 𝑥 ) = 𝑥 ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → ( 0 + 𝑥 ) = 𝑥 ) |
14 |
13
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → ( ( 0 + 𝑥 ) + ( i · 𝑦 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) |
15 |
10 14
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → ( 0 + ( 𝑥 + ( i · 𝑦 ) ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) |
16 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) |
17 |
16
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → ( 0 + 𝐴 ) = ( 0 + ( 𝑥 + ( i · 𝑦 ) ) ) ) |
18 |
15 17 16
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) → ( 0 + 𝐴 ) = 𝐴 ) |
19 |
18
|
3exp |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 + 𝐴 ) = 𝐴 ) ) ) |
20 |
19
|
rexlimdvv |
⊢ ( 𝐴 ∈ ℂ → ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 + 𝐴 ) = 𝐴 ) ) |
21 |
1 20
|
mpd |
⊢ ( 𝐴 ∈ ℂ → ( 0 + 𝐴 ) = 𝐴 ) |