Metamath Proof Explorer


Theorem sn-addcand

Description: addcand without ax-mulcom . Note how the proof is almost identical to addcan . (Contributed by SN, 5-May-2024)

Ref Expression
Hypotheses sn-addcand.a φA
sn-addcand.b φB
sn-addcand.c φC
Assertion sn-addcand φA+B=A+CB=C

Proof

Step Hyp Ref Expression
1 sn-addcand.a φA
2 sn-addcand.b φB
3 sn-addcand.c φC
4 sn-negex2 Axx+A=0
5 1 4 syl φxx+A=0
6 oveq2 A+B=A+Cx+A+B=x+A+C
7 simprr φxx+A=0x+A=0
8 7 oveq1d φxx+A=0x+A+B=0+B
9 simprl φxx+A=0x
10 1 adantr φxx+A=0A
11 2 adantr φxx+A=0B
12 9 10 11 addassd φxx+A=0x+A+B=x+A+B
13 sn-addlid B0+B=B
14 11 13 syl φxx+A=00+B=B
15 8 12 14 3eqtr3d φxx+A=0x+A+B=B
16 7 oveq1d φxx+A=0x+A+C=0+C
17 3 adantr φxx+A=0C
18 9 10 17 addassd φxx+A=0x+A+C=x+A+C
19 sn-addlid C0+C=C
20 17 19 syl φxx+A=00+C=C
21 16 18 20 3eqtr3d φxx+A=0x+A+C=C
22 15 21 eqeq12d φxx+A=0x+A+B=x+A+CB=C
23 6 22 imbitrid φxx+A=0A+B=A+CB=C
24 oveq2 B=CA+B=A+C
25 23 24 impbid1 φxx+A=0A+B=A+CB=C
26 5 25 rexlimddv φA+B=A+CB=C