Description: addcand without ax-mulcom . Note how the proof is almost identical to addcan . (Contributed by SN, 5-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sn-addcand.a | |
|
sn-addcand.b | |
||
sn-addcand.c | |
||
Assertion | sn-addcand | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-addcand.a | |
|
2 | sn-addcand.b | |
|
3 | sn-addcand.c | |
|
4 | sn-negex2 | |
|
5 | 1 4 | syl | |
6 | oveq2 | |
|
7 | simprr | |
|
8 | 7 | oveq1d | |
9 | simprl | |
|
10 | 1 | adantr | |
11 | 2 | adantr | |
12 | 9 10 11 | addassd | |
13 | sn-addlid | |
|
14 | 11 13 | syl | |
15 | 8 12 14 | 3eqtr3d | |
16 | 7 | oveq1d | |
17 | 3 | adantr | |
18 | 9 10 17 | addassd | |
19 | sn-addlid | |
|
20 | 17 19 | syl | |
21 | 16 18 20 | 3eqtr3d | |
22 | 15 21 | eqeq12d | |
23 | 6 22 | imbitrid | |
24 | oveq2 | |
|
25 | 23 24 | impbid1 | |
26 | 5 25 | rexlimddv | |