Step |
Hyp |
Ref |
Expression |
1 |
|
sn-negex2 |
|- ( A e. CC -> E. x e. CC ( x + A ) = 0 ) |
2 |
|
simprr |
|- ( ( A e. CC /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + A ) = 0 ) |
3 |
2
|
oveq1d |
|- ( ( A e. CC /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + 0 ) = ( 0 + 0 ) ) |
4 |
|
sn-00id |
|- ( 0 + 0 ) = 0 |
5 |
3 4
|
eqtrdi |
|- ( ( A e. CC /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + 0 ) = 0 ) |
6 |
|
simprl |
|- ( ( A e. CC /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> x e. CC ) |
7 |
|
simpl |
|- ( ( A e. CC /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> A e. CC ) |
8 |
|
0cnd |
|- ( ( A e. CC /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> 0 e. CC ) |
9 |
6 7 8
|
addassd |
|- ( ( A e. CC /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + 0 ) = ( x + ( A + 0 ) ) ) |
10 |
2 5 9
|
3eqtr2rd |
|- ( ( A e. CC /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + ( A + 0 ) ) = ( x + A ) ) |
11 |
7 8
|
addcld |
|- ( ( A e. CC /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( A + 0 ) e. CC ) |
12 |
6 11 7
|
sn-addcand |
|- ( ( A e. CC /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + ( A + 0 ) ) = ( x + A ) <-> ( A + 0 ) = A ) ) |
13 |
10 12
|
mpbid |
|- ( ( A e. CC /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( A + 0 ) = A ) |
14 |
1 13
|
rexlimddv |
|- ( A e. CC -> ( A + 0 ) = A ) |