Step |
Hyp |
Ref |
Expression |
1 |
|
sn-negex2 |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝑥 + 𝐴 ) = 0 ) |
2 |
|
simprr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 𝑥 + 𝐴 ) = 0 ) |
3 |
2
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + 𝐴 ) + 0 ) = ( 0 + 0 ) ) |
4 |
|
sn-00id |
⊢ ( 0 + 0 ) = 0 |
5 |
3 4
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + 𝐴 ) + 0 ) = 0 ) |
6 |
|
simprl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → 𝑥 ∈ ℂ ) |
7 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → 𝐴 ∈ ℂ ) |
8 |
|
0cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → 0 ∈ ℂ ) |
9 |
6 7 8
|
addassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + 𝐴 ) + 0 ) = ( 𝑥 + ( 𝐴 + 0 ) ) ) |
10 |
2 5 9
|
3eqtr2rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 𝑥 + ( 𝐴 + 0 ) ) = ( 𝑥 + 𝐴 ) ) |
11 |
7 8
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 𝐴 + 0 ) ∈ ℂ ) |
12 |
6 11 7
|
sn-addcand |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + ( 𝐴 + 0 ) ) = ( 𝑥 + 𝐴 ) ↔ ( 𝐴 + 0 ) = 𝐴 ) ) |
13 |
10 12
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 𝐴 + 0 ) = 𝐴 ) |
14 |
1 13
|
rexlimddv |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) |