Step |
Hyp |
Ref |
Expression |
1 |
|
sn-addcan2d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
sn-addcan2d.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
sn-addcan2d.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
sn-negex |
⊢ ( 𝐶 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝐶 + 𝑥 ) = 0 ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℂ ( 𝐶 + 𝑥 ) = 0 ) |
6 |
|
oveq1 |
⊢ ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) → ( ( 𝐴 + 𝐶 ) + 𝑥 ) = ( ( 𝐵 + 𝐶 ) + 𝑥 ) ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → 𝐴 ∈ ℂ ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → 𝐶 ∈ ℂ ) |
9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → 𝑥 ∈ ℂ ) |
10 |
7 8 9
|
addassd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( 𝐴 + 𝐶 ) + 𝑥 ) = ( 𝐴 + ( 𝐶 + 𝑥 ) ) ) |
11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( 𝐶 + 𝑥 ) = 0 ) |
12 |
11
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( 𝐴 + ( 𝐶 + 𝑥 ) ) = ( 𝐴 + 0 ) ) |
13 |
|
sn-addid1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) |
14 |
7 13
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( 𝐴 + 0 ) = 𝐴 ) |
15 |
10 12 14
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( 𝐴 + 𝐶 ) + 𝑥 ) = 𝐴 ) |
16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → 𝐵 ∈ ℂ ) |
17 |
16 8 9
|
addassd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( 𝐵 + 𝐶 ) + 𝑥 ) = ( 𝐵 + ( 𝐶 + 𝑥 ) ) ) |
18 |
11
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( 𝐵 + ( 𝐶 + 𝑥 ) ) = ( 𝐵 + 0 ) ) |
19 |
|
sn-addid1 |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 + 0 ) = 𝐵 ) |
20 |
16 19
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( 𝐵 + 0 ) = 𝐵 ) |
21 |
17 18 20
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( 𝐵 + 𝐶 ) + 𝑥 ) = 𝐵 ) |
22 |
15 21
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( ( 𝐴 + 𝐶 ) + 𝑥 ) = ( ( 𝐵 + 𝐶 ) + 𝑥 ) ↔ 𝐴 = 𝐵 ) ) |
23 |
6 22
|
syl5ib |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) → 𝐴 = 𝐵 ) ) |
24 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ) |
25 |
23 24
|
impbid1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
26 |
5 25
|
rexlimddv |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |