Metamath Proof Explorer


Theorem sn-addcan2d

Description: addcan2d without ax-mulcom . (Contributed by SN, 5-May-2024)

Ref Expression
Hypotheses sn-addcan2d.a φA
sn-addcan2d.b φB
sn-addcan2d.c φC
Assertion sn-addcan2d φA+C=B+CA=B

Proof

Step Hyp Ref Expression
1 sn-addcan2d.a φA
2 sn-addcan2d.b φB
3 sn-addcan2d.c φC
4 sn-negex CxC+x=0
5 3 4 syl φxC+x=0
6 oveq1 A+C=B+CA+C+x=B+C+x
7 1 adantr φxC+x=0A
8 3 adantr φxC+x=0C
9 simprl φxC+x=0x
10 7 8 9 addassd φxC+x=0A+C+x=A+C+x
11 simprr φxC+x=0C+x=0
12 11 oveq2d φxC+x=0A+C+x=A+0
13 sn-addrid AA+0=A
14 7 13 syl φxC+x=0A+0=A
15 10 12 14 3eqtrd φxC+x=0A+C+x=A
16 2 adantr φxC+x=0B
17 16 8 9 addassd φxC+x=0B+C+x=B+C+x
18 11 oveq2d φxC+x=0B+C+x=B+0
19 sn-addrid BB+0=B
20 16 19 syl φxC+x=0B+0=B
21 17 18 20 3eqtrd φxC+x=0B+C+x=B
22 15 21 eqeq12d φxC+x=0A+C+x=B+C+xA=B
23 6 22 imbitrid φxC+x=0A+C=B+CA=B
24 oveq1 A=BA+C=B+C
25 23 24 impbid1 φxC+x=0A+C=B+CA=B
26 5 25 rexlimddv φA+C=B+CA=B