Metamath Proof Explorer


Theorem reixi

Description: ixi without ax-mulcom . (Contributed by SN, 5-May-2024)

Ref Expression
Assertion reixi i i = 0 - 1

Proof

Step Hyp Ref Expression
1 ax-i2m1 i i + 1 = 0
2 1re 1
3 renegid2 1 0 - 1 + 1 = 0
4 2 3 ax-mp 0 - 1 + 1 = 0
5 1 4 eqtr4i i i + 1 = 0 - 1 + 1
6 ax-icn i
7 6 6 mulcli i i
8 7 a1i i i
9 rernegcl 1 0 - 1
10 9 recnd 1 0 - 1
11 2 10 mp1i 0 - 1
12 1cnd 1
13 8 11 12 sn-addcan2d i i + 1 = 0 - 1 + 1 i i = 0 - 1
14 5 13 mpbii i i = 0 - 1
15 14 mptru i i = 0 - 1