Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Real subtraction
reixi
Next ⟩
rei4
Metamath Proof Explorer
Ascii
Unicode
Theorem
reixi
Description:
ixi
without
ax-mulcom
.
(Contributed by
SN
, 5-May-2024)
Ref
Expression
Assertion
reixi
⊢
i
⁢
i
=
0
-
ℝ
1
Proof
Step
Hyp
Ref
Expression
1
ax-i2m1
⊢
i
⁢
i
+
1
=
0
2
1re
⊢
1
∈
ℝ
3
renegid2
⊢
1
∈
ℝ
→
0
-
ℝ
1
+
1
=
0
4
2
3
ax-mp
⊢
0
-
ℝ
1
+
1
=
0
5
1
4
eqtr4i
⊢
i
⁢
i
+
1
=
0
-
ℝ
1
+
1
6
ax-icn
⊢
i
∈
ℂ
7
6
6
mulcli
⊢
i
⁢
i
∈
ℂ
8
7
a1i
⊢
⊤
→
i
⁢
i
∈
ℂ
9
rernegcl
⊢
1
∈
ℝ
→
0
-
ℝ
1
∈
ℝ
10
9
recnd
⊢
1
∈
ℝ
→
0
-
ℝ
1
∈
ℂ
11
2
10
mp1i
⊢
⊤
→
0
-
ℝ
1
∈
ℂ
12
1cnd
⊢
⊤
→
1
∈
ℂ
13
8
11
12
sn-addcan2d
⊢
⊤
→
i
⁢
i
+
1
=
0
-
ℝ
1
+
1
↔
i
⁢
i
=
0
-
ℝ
1
14
5
13
mpbii
⊢
⊤
→
i
⁢
i
=
0
-
ℝ
1
15
14
mptru
⊢
i
⁢
i
=
0
-
ℝ
1