Metamath Proof Explorer


Theorem rei4

Description: i4 without ax-mulcom . (Contributed by SN, 27-May-2024)

Ref Expression
Assertion rei4 iiii=1

Proof

Step Hyp Ref Expression
1 reixi ii=0-1
2 1 1 oveq12i iiii=0-10-1
3 1re 1
4 rernegcl 10-1
5 1red 11
6 4 5 remulneg2d 10-10-1=0-0-11
7 ax-1rid 0-10-11=0-1
8 4 7 syl 10-11=0-1
9 8 oveq2d 10-0-11=0-0-1
10 renegneg 10-0-1=1
11 6 9 10 3eqtrd 10-10-1=1
12 3 11 ax-mp 0-10-1=1
13 2 12 eqtri iiii=1