Step |
Hyp |
Ref |
Expression |
1 |
|
reixi |
|- ( _i x. _i ) = ( 0 -R 1 ) |
2 |
1 1
|
oveq12i |
|- ( ( _i x. _i ) x. ( _i x. _i ) ) = ( ( 0 -R 1 ) x. ( 0 -R 1 ) ) |
3 |
|
1re |
|- 1 e. RR |
4 |
|
rernegcl |
|- ( 1 e. RR -> ( 0 -R 1 ) e. RR ) |
5 |
3 4
|
ax-mp |
|- ( 0 -R 1 ) e. RR |
6 |
|
0re |
|- 0 e. RR |
7 |
|
resubdi |
|- ( ( ( 0 -R 1 ) e. RR /\ 0 e. RR /\ 1 e. RR ) -> ( ( 0 -R 1 ) x. ( 0 -R 1 ) ) = ( ( ( 0 -R 1 ) x. 0 ) -R ( ( 0 -R 1 ) x. 1 ) ) ) |
8 |
5 6 3 7
|
mp3an |
|- ( ( 0 -R 1 ) x. ( 0 -R 1 ) ) = ( ( ( 0 -R 1 ) x. 0 ) -R ( ( 0 -R 1 ) x. 1 ) ) |
9 |
|
remul01 |
|- ( ( 0 -R 1 ) e. RR -> ( ( 0 -R 1 ) x. 0 ) = 0 ) |
10 |
5 9
|
ax-mp |
|- ( ( 0 -R 1 ) x. 0 ) = 0 |
11 |
|
ax-1rid |
|- ( ( 0 -R 1 ) e. RR -> ( ( 0 -R 1 ) x. 1 ) = ( 0 -R 1 ) ) |
12 |
5 11
|
ax-mp |
|- ( ( 0 -R 1 ) x. 1 ) = ( 0 -R 1 ) |
13 |
10 12
|
oveq12i |
|- ( ( ( 0 -R 1 ) x. 0 ) -R ( ( 0 -R 1 ) x. 1 ) ) = ( 0 -R ( 0 -R 1 ) ) |
14 |
|
renegneg |
|- ( 1 e. RR -> ( 0 -R ( 0 -R 1 ) ) = 1 ) |
15 |
3 14
|
ax-mp |
|- ( 0 -R ( 0 -R 1 ) ) = 1 |
16 |
8 13 15
|
3eqtri |
|- ( ( 0 -R 1 ) x. ( 0 -R 1 ) ) = 1 |
17 |
2 16
|
eqtri |
|- ( ( _i x. _i ) x. ( _i x. _i ) ) = 1 |